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Abstract

Castings for single crystal aerofoils can be prone to re-
crystallisation during solution heat treatment; however
quantitative information concerning the factors causing
this phenomenon is lacking. In this paper, mathemati-
cal modelling and targeted experimentation are used to
deduce the levels of localised plastic strain needed for
recrystallisation to occur. The influences of differential
thermal contraction against the shell, specimen geometry
and stress concentration factor are quantified. The model
predicts that the induced strain in the metal increased
with the ceramic shell thickness, and in some geometries,
with the solidification height. Negligible plastic strains
were predicted in a solid casting with no stress concen-
tration features. However, as the geometry became more
complex by reducing the casting cross-section, by the in-
sertion of a core and introduction of stress concentration
features, the induced plastic strains increased significantly.
The predicted plastic strain for recrystallisation in a cored
casting was in good agreement with experimental critical
strain data. The model provides the foundation for a
systems-based approach which enables recrystallisation to
be predicted and thus avoided, prior to its occurrence in
the foundry.

Introduction

It is well known that turbine blades for gas turbine ap-
plications are investment cast, often into single crystal
form. But much less appreciated is that during processing,
deformation is induced in the nickel-based superalloy dur-
ing cooling; this is due to differential thermal contraction
of the ceramic shell, core and the metal arising primar-
ily from their differing thermal expansion coefficients [1].
In the foundry, this effect has some practical ramifica-

tions. First, account needs to be taken of the shrinkages
[2] which occur — for example, the final casting will not
exhibit the same dimensions as the wax model. Second,
plastic strains can be produced which are large enough
to induce recrystallisation during subsequent solutioning
heat treatment. Particularly for components cast in single
crystal form, the occurrence of recrystallisation cannot
be tolerated — the associated high angle grain boundaries
degrade the creep [3, 4] and fatigue [5, 6] properties signif-
icantly. Work has been done to study the recrystallisation
behaviour of single crystal superalloys under the influ-
ence of different annealing conditions and microstructural
features [1, 5, 6, 7, 8, 9]. However, from the processing per-
spective, very little attention has been given to developing
a systematic approach to controlling this problem.

This paper is concerned with the mathematical mod-
elling of investment casting, with particular emphasis on
thermal-mechanical effects so that processing-induced plas-
ticity can be predicted and rationalised. The overarching
goal is to build a physics-based tool for the prediction
of recrystallisation during the processing of single crystal
parts. Traditionally, the avoidance of recrystallisation has
been dealt with in a rather empirical way, with reliance
placed on existing casting practice, experience and rules
of thumb. Mathematical modelling represents a method
by which the physical effects causing recrystallisation can
be anticipated, which is obviously advantageous. Such
modelling might be used for the optimisation of process-
ing conditions, so that the likelihood of recrystallisation
can be reduced. If sufficiently robust, it might also be
used during the early stages of design process to influence
the geometry chosen for the turbine blade — as part of a
systems-based approach to component design.
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Methods

Modelling approach

For the purposes of the present work, and in particular to
simplify the modelling and experimentation validation, a
simplified geometry was considered adequate. This was de-
signed to represent an analogue of a turbine blade aerofoil,
of approximately comparable size and containing flanges
to simulate the mechanical constraints provided by plat-
forms and shrouds. Figure 1 illustrates the details of the
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Figure 1: Casting geometry of turbine blade analogue
testpiece (“bobbin” geometry): (a) real casting with all
notches in the middle position and (b) schematic illus-
tration of the geometry, where ¢core, ¢ and W are core
diameter, gauge diameter and wall thickness, respectively

testpiece analysed, which has been christened the “bobbin”
geometry. Between the three platforms/shrouds flanges of
thickness 5 mm, and fillet radii of 2 mm were introduced
consistent with a stress concentration factor of 1.80. The
three gauge lengths of diameter 15 mm are identified ac-
cording to the notation L;, Lo and Lz, with Ly and Ls
being the first and last to solidify, respectively, during the
casting. In some cases — in order to introduce greater com-
plexity — further stress concentration features of known
factors K; were introduced into the gauge lengths. In some
further instances, a ceramic core was used to facilitate the
casting of hollow testpieces of wall thickness as small as
1.5mm. The details of the various geometries considered
are summarised in Table 1. The nominal thickness of the
shell was 5.5 mm.

The finite element method was employed for the mod-
elling, with use being made of the ProCAST software
[10]. Temperature dependent material parameters and
isotropic mechanical behaviour in as-cast condition were
assumed, consistent with the single crystal superalloy

CMSX-4, which was used for the validation studies. Thus,
the following thermal and mechanical properties of CMSX-
4 were employed: density, specific heat capacity, thermal
conductivity, yield stress, ultimate yield strength, hard-
ening exponent, thermal expansion coefficient, Young’s
modulus and Poisson’s ratio, taken in the (001) solidi-
fication direction. The stresses and strains, especially
plastic strains, are of primary interest here; since radial
symmetry was present in all cases, it proved sufficient to
model only a 30 degree section of the components for the
mechanical part of the calculation. For the superalloy, an
elastic-plastic formulation has been employed assuming
an isotropic yield criterion. In the modelling, effective
(accumulated) plastic strain is approximated by Pl The
relationship between stress, o, and Pl which describes
the hardening mechanism is defined by

(1)

where 0, oy and H are ultimate yield stress, yield
strength and hardening exponent, respectively. For the
superalloy, model parameters were adopted from [3]. For
the shell and core, representative values for alumina- and
silica-based shell materials adapted from [11] were used.
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Figure 2: Heating cycle used during the investment casting
trials.

To assist with model validation, some of the geometries
identified in Table 1 were fabricated from the CMSX-4 sin-
gle crystal superalloy. A semi-industrial scale investment
single-shot casting facility at University of Birmingham



Table 1: Details of the bobbin castings which were modelled; those chosen for experimental casting are labelled by .

No. | Label Gauge diameter (¢) | Notch K Wall thickness (W) | Core diameter (¢core)
(mm) position | Ly | Lo | Ls (mm) (mm)

1 | SB15T 15 - - - - - -

2 | SB9 9 - - - - - -

3 | MSB15t 15 Middle | 1.6 | 2.0 | 2.6 - -

4 | TSB15 15 Top 16 | 2.0 26 - -

5 | MSB9 9 Middle | 1.6 | 2.0 | 2.6 - -

6 | CB1.5 15 - - - - 1.5 12
7 | TSB9 9 Top 16 | 20126 - -

8 | MCB 15 Middle | 1.6 | 2.0 | 2.6 1.5<W <35 9

9 | TCB 15 Top 1.6 | 2.0 | 2.6 1.5<W <35 9
10 | MSB-1 15 Middle | 1.6 | 1.6 | 1.6 - -
11 | MSB-2 15 Middle | 2.0 | 2.0 | 2.0 - -
12 | MSB-3t 15 Middle | 2.6 | 2.6 | 2.6 - -
13 | TSB-1 15 Top 16 |16 1.6 - -
14 | TSB-2 15 Top |20]20] 20 - -
15 | TSB-3 15 Top | 26|26 26 - -
16 | CB3.0 15 - - - - 3.0 9

was employed. Moulds were prepared using wax assem-
bly, ceramic processing and steam-autoclave dewaxing
methods, following standard procedures.

The casting cycle followed is shown Figure 2. The
molten metal was poured under vacuum conditions at
1500°C into the mould, and withdrawn thereafter at
229 mm /hr; when all of the mould had passed the baffle,
cooling was allowed to proceed in air. Some of the castings
were instrumented using Rh/Pt Type B thermocouples,
which have measurement capability up to 1750°C, with
use being made of alumina sheaths of 4 mm outside diame-
ter, 2mm inside diameter and 15 mm length. All castings
received the standard CMSX-4 solution heat treatment,
which has a final solutioning step of 1315°C/6 hrs [1].

Transmission electron microscopy

Transmission electron microscopy (TEM) was used to
study the deformation induced during the investment cast-
ing process. As cast bars of the CMSX-4 superalloy were
used for this purpose. For sample preparation, discs of ~3
mm diameter and 0.2-0.3 mm thickness were subjected to
twin-jet electropolishing with 10% perchloric acid solution
in methanol; 20.5 V and —5°C were the working condi-
tions. A JEOL 200CX TEM was used at an accelerating
voltage of 200 kV for bright field imaging of the deformed
microstructures.

Mechanical testing — critical plastic strain for

recrystallisation

Deformation testing in compression of as-cast CMSX-
4 was carried out at different temperatures in order to
evaluate the critical straining conditions necessary for
recrystallisation. Samples for this purpose were sliced
from as-cast bars, such that their external convex surfaces
were consistent with an as-cast surface finish; they were of
10 mm diameter and 12mm length. At temperature these
were compressed uniaxially parallel to (001) at 0.2%/min.
The strained samples were subsequently subjected to the
standard solution heat treatment for CMSX-4. All samples
were sectioned longitudinally along (001) for examination.

Results

In this section our results are summarised as follows. First,
some basic considerations relevant to the problem are
discussed; results from a basic one-dimensional model
are given and its predictions are compared with results
from TEM. Next, results from (i) the thermal and (ii)
thermal-mechanical finite element modelling are presented.
There follows a sensitivity analysis which explores the
effects of the important processing parameters. Finally,
the predictions are compared with the results from our
experimental studies.
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Preliminary Considerations
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Figure 3: Strain evolution during cooling from 1300°C, as
predicted by the 1D modelling. The terms eth, eel, Pl
and €l are the magnitudes of the total thermal strain,
elastic strain, plastic strain and creep strain, respectively.

Consider the situation of a solid cylinder of CMSX-4
held within a mould assumed to be totally rigid; this simple
test case can then be modelled in 1D using an elasto-visco-
plastic material law under the assumption of isotropic
elasticity in one dimension. The decomposition of the total
strain into the sum of each strain components was assumed.
The calculation detail can be found in [12]. The cooling
rate is assumed to be uniform at 229 mm/hr, consistent
with the data of Figure 2. The results, which are shown in
Figure 3, indicate that about 0.1% plastic strain is induced
at temperatures in excess of 1200°C, see zone A which is
marked on the figure. On further cooling, creep is found to
play a role in zone B between 1200°C and 1000°C. Further
plastic strain is induced only when the temperature falls
to 600°C, building up substantially thereafter — zone D.
Within zone C between 1000°C and 600°C, the inelastic
strains do not increase at all. These calculations indicate
that the plasticity which is the cause of recrystallisation is
likely to be induced soon after solidification is completed,
at temperatures in excess of 1000°C.

To further investigate these predictions the microstruc-
ture of CMSX-4 in the as-cast condition was examined
using TEM. The interdendritic regions showed an appre-
ciable dislocation density, whereas the dendritic regions
appeared relatively dislocation-free, see Figure 4(a) and
4(b). Dislocations were primarily at the v/+" interface
forming loops around the precipitates.

To place these observations into context, deformation
in as-cast samples strained at various temperatures were
studied. Between 20°C and 550°C shearing by disloca-
tions along the {111}(110) slip systems was the primary
deformation mechanism, with dislocations dipoles, loops
and pairs in the 4/, Figure 4(c). However, with deforma-
tion at 750°C stacking faults were also observed within
the +/, Figure 4(d); these form due to the activation
of {111}(112) slip systems. At higher temperatures of
1050°C and 1200°C, dislocation networks form at the
~v/7' interface, Figure 4(e) and 4(f), leaving both v and
~' relatively dislocation-free.

The dislocation structure within the as-cast microstruc-
ture is rarely reported and it is significant that a high
dislocation density is observed. Solution heat treatment
would dissolve the v/ allowing the loops to annihilate to
give the more familiar dislocation-free microstructure. The
simple geometry of the bar experiences the lowest possible
stresses during casting, yet clearly undergoes deformation
at the yield stress appropriate to the deformation tem-
perature. Comparison of the microstructures in Figure 4
shows that the as-cast microstructures of Figures 4(a) and
4(b) most nearly resemble the higher temperature defor-
mation of Figures 4(e) and 4(f), evidenced by the absence
of stacking faults, dislocation dipoles and loops within
the /. Differences in the dislocation density between the
dendritic and interdendritic areas suggest plasticity close
to the 7/ solvus temperature as, in a highly segregated
microstructure, the dendritic area would be the last to
form the /. This is consistent with the predictions from
the model that most of the deformation occurs between
1200°C and 1300°C, as depicted in Figure 3. There is no
evidence of the plastic deformation below 600°C, and the
necessary stresses for yield at 600°C are probably above
the fracture stress of the ceramic shell.

Thermal model

Thermocouple measurements were made at the locations
Ly and Ly during the casting of the bobbin testpiece SB15
of Table 1. Figure 5 compares the thermocouple readings
with the results of the modelling. As expected, given
the location of the thermocouples, the readings from Lo
are consistently higher than those from L; at any given
time; a maximum difference of up to 120°C was measured.
The model predictions are in good agreement with the
experimental results between approximately 1515°C and
1000°C.

The important temperature range for this study is be-
tween 1300°C and 1000°C, since strain accumulation oc-
curs only below the solidus temperature of the alloy, which
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Figure 4: Dislocation structures in as-cast CMSX 4: (a) dendritic region in a bar; (b) interdendritic region in a bar;
(c) tensile plastic strain of 1.51% at 550°C; (d) tensile plastic strain of 1.45% at 750°C; (e) tensile plastic strain of
1.85% at 1050°C; (d) tensile plastic strain of 1.30% at 1200°C. A: dislocations at v/~' interface, B: dislocation-free ~,
C: dislocation dipoles, D: dislocation pairs, E: dislocation loops, F: stacking faults. The mottled appearance within ~y
in (e) and (f) is due to reprecipitation of 7 during cooling. The TEM foil normal is (001) — bright field images with
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Figure 5: Comparison between predicted thermal fields
and thermocouple measurements during the casting of
SB15.

is about 1330°C:; this is consistent with the predictions in
Figure 3. Below 1000°C, the model underestimates the
cooling rates somewhat, due to the rather complicated
heat transfer effects which are not accounted for perfectly.
However, as it has been seen that only temperatures above
1000°C are significant for recrystallisation (Figures 3 and
4), the results in Figure 5 demonstrate that the thermal
characteristics of the furnace used are captured sufficiently
well.

Thermal-Mechanical Model

Thermal-mechanical modelling was carried out using the
ProCAST software, specifically to explore the effects of
geometry, stress concentration features, shell thickness
and shell type.

In summarising the results, use will be made of the
notation of Table 1.

Figure 6 illustrates the significant effects of shell thick-
ness and stress concentration factor, which have been
found for the solid testpieces MSB-1 to TSB-3 of Table 1.
One sees first that there is a substantial effect due to the
thickness of the shell; greater thicknesses have the capacity
to increase the accumulated plastic strains markedly. The
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Figure 6: Variation of effective plastic strain accumulation with shell thickness and stress concentration factors in

different locations.

effect is greatest when the stress concentration factor K
is as high as 2.6; the plastic strains produced by K; values
of 1.6 and 2.0 were found to be approximately the same
and not strongly influenced by shell thickness.

The plastic strains predicted by the modelling were
found to be consistently higher for the L3 location than
L1, and in general in the order L3 > Ly > L;. This is
logical as the lower part of the casting solidifies first and
thereafter is always at a lower temperature than positions
lying above it — these get strained to a greater extent due
to their higher temperatures with concomitantly lower
yield stresses. The maximum plastic strain induced was
also affected by the location of the notch, e.g. whether it
was placed at the very middle of the gauge or alternatively
directly under the flange, see Figure 1. Higher plastic
strains were generally seen in the latter cases, and this
appeared to be an effect of the overlap of stresses at the
concentration features around the fillet radii under the
flanges with that of the machined notches.

In addition to the above, a sensitivity analysis for plastic
strain accumulation was carried out to explore the effects
of shell material and withdrawal rates. Two distinct shell
systems were studied: an alumina-based one (referred to
here as Shelll) and a silica-based one (Shell2). Thermal
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Figure 7: Variation of effective plastic strain with different
shell materials, for SB15 and MSB15 bobbin testpieces.

expansion coefficients and Young’s moduli have been as-
sumed to be linear functions of temperature, and given
the materials used Shelll is appreciably stiffer than Shell2;
consequently, more plastic strain might be anticipated
within the metal cast in Shelll than in Shell2. Calcula-
tions were carried out for the SB15 and MSB15 geometries,
see Figure 7. The plastic strain induced in the unnotched
bobbin SB15 was small and not appreciably influenced
by shell type; moreover, the plastic strain was uniformily
distributed along the casting. For the notched testpiece
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MSBI15, the strain was concentrated strongly around the
notch, and in particular for Shell2 it showed again the
tendency L3z > Lo > L;. For Shelll the plastic strain

did not vary strongly from gauge length to gauge length.

Withdrawal rate was also found to exhibit a significant
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Figure 8: Variation of effective plastic strain with with-
drawal rates for the MSB15 bobbin.

effect on the level of plastic strain accumulated. Slower
withdrawal rates lead to slower cooling rates and hence
lower strain rates for deformation. Generally, this leads to
lower plastic strains. Figure 8 illustrates the quantitative
data associated with this effect. More deformation was
found around the notches of MSB15 than under the flange
features.

To summarise, all castings listed in Table 1 were mod-
elled to examine the cumulative effect of casting cross-
section, strength of stress concentration factor, its location
and the presence of a core. Figure 9 plots the maximum
plastic strain generated in the different castings and con-
firms that there is a strong influence of casting geometry.
In the solid castings the induced strain was low and ap-
proximately constant irrespective of the gauge diameter
and even in the solid castings with the stress concentration
features the induced strain was low and negligible. How-
ever, as the gauge cross-sections were reduced by using
a ceramic core the plastic strains increased significantly.
The introduction of stress concentration features accen-
tuated the accumulated strains. Positioning a notch in
the top of the gauge generated the highest strains; TCB
bobbin was predicted to have approximately 13% plastic
strain after casting.

TCB
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Figure 9: Variation of the predicted plastic strain at am-

bient temperature for the different geometries at location
Ls.
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Figure 10: Variation of effective plastic strain predicted in
the cast testpieces and associated observations of recrys-
tallisation after solution heat treatment.

In order to assess the accuracy of the modelling, tar-
geted model-driven experimentation was carried out which
involved some of the bobbin geometries being cast. The
castings fabricated are identified in Figure 10. After sub-
sequent solution heat treatment, none of the solid castings
with 15mm gauge diameter recrystallised, however when
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the gauge thickness was reduced to 1.5 mm with a ceramic
core recrystallisation was produced over the entire length
of the casting, see Figure 11. In Figure 12 the evolution

Figure 11: Recrystallisation in cored bobbin CB1.5 after
solution heat treatment.

of the plastic strain in the individual gauge sections of
the simple solid casting and the cored casting is plotted.
During cooling, plastic strain of only 0.35-0.4% is pre-
dicted in the former, and ~2.5% in the latter. One would
expect of course that the recrystallisation would depend
upon the nature of the plastic strain. In order to check
this, the nature of cooling stresses within the castings
was examined in conjunction with the plastic strain level
accumualted. Figure 13 compares the distribution of ef-
fective plastic strains and average normal stresses on a
longitudinal section and the surface of the solid and cored
castings.

It was found that the normal stresses within the gauge
regions of the castings were primarily tensile, consistent
with the lower thermal expansion coefficient of the ceramic
mould. The strains within the solid casting were below
the critical level to cause recrystallisation, as observed.
However, the tensile strains induced within the cored
casting were above the critical level, causing the entire
casting to recrystallise.

The intensity and distribution of normal stresses in-
creased with the solidification height. This would be
expected as the cooling of the lower regions would impart
contraction stresses on the regions above which would be
at higher temperatures; this is also consistent with the
results presented in Figure 6. This, consequently, was
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Figure 12: Plastic strain evolution during casting of bobbin
testpieces SB15 and CB1.5 at the different locations.

reflected in the strain distribution. Figure 12 showed that
during the cooling of the cored casting L3 got strained
the earliest and L; was the last region to get strained to
the maximum. Towards the end of the cooling process all
the gauge sections had approximately the same amount
of plastic strain.

Moreover, plastic strain in the cored casting was higher
on the inner surface than the outer surface; on the other
hand, the normal stresses were lower on the inner surface
than on the outer surface. The fillet regions between the
flanges and the gauges in the cored casting did not show
any particular stress concentration (except a thin region
showing compressive stresses in the fillet region below L1);
consequently, this generated no strain in these regions.
However, stress concentration was observed in the fillet
regions of the solid casting; it was primarily tensile in
nature, however the fillet region below L; showed com-
pressive stresses also. In the cored casting the ratio of the
gauge cross-section to the flange thickness is much smaller
than in the solid casting. Hence, in the cored casting
the gauge regions are most susceptible to developing the
very highest plastic strains (~2.5%). On the other hand,
in the solid casting, strains get concentrated on features
such as fillet regions, and the gauge regions develop only
half the maximum strain at most (<0.15%). In the solid
casting, strain concentration was only observed in the fillet
regions which were below the flanges due to the effect of
axial contraction during the cooling. In both castings, the
gauge regions closer to the flanges displayed higher normal
stresses, and consequently higher plastic strains. In the
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Figure 14: Recrystallisation results for CMSX-4 after uni-
axial compression; all samples were solution heat treated
after straining. The label ‘N’ means no recrystallisation
and ‘Y’ means recrystallisation occurred.

cored casting, the middle two flanges showed local com-
pressive stresses at the interfaces with the gauge regions.
These developed 0.5-1% plastic strains, and according to
Figure 14 such regions could have been additional sites
for nucleation of recrystallisation.

As a final check of the conclusions drawn from this
work, cylindrical compression testpieces of CMSX-4 in
the as-cast condition were deformed to various levels of
plastic strain, at temperatures between 1100 and 1300°C,
750°C and ambient conditions; they were then subjected
to the standard solutioning heat treatment to determine
whether recrystallisation occurred. The compression test-
pieces were sliced from cylindical cast bars and therefore
recrystallisation tended to occur preferentially at the as-
cast surfaces [6]. The results are summarised in Figure 14.
The critical plastic strains for recrystallisation were found
to be 1-1.5% and 2-2.5% at 20°C and 750°C, respectively,
but at 1100°C or higher the critical value was <0.3%.
Our analysis indicates that some low levels of strain can
be readily accumulated in investment castings, particu-
larly around stress concentration features, in thin-walled
castings and with shells which are stiff.
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Summary and Conclusions Awards (DHPAs). Helpful discussions with Paul Brown
and Neil Jones of Rolls-Royce plc are acknowledged. The

A model for the analysis of processing-induced plasticity ~Provision of the ProCAST software by the ESI Group

during investment casting has been presented. It is capable
of predicting the sites of localised plasticity needed for
recrystallisation to occur during heat treatment of single
crystal castings. The specific conclusions are:

e The analysis suggests that the plasticity needed for
recrystallisation is likely to be induced during the
early stages of cooling, when the temperature remains
above 1000°C. This is supported by metallurgical
evidence via TEM observations, which indicate that
the dislocations are present as networks at the /7
interfaces, rather than shear bands which penetrate
the 7/ precipitates.

e The modelling and supporting experimentation in-
dicate that recrystallisation is exacerbated by stiffer
and thicker shells, by reduced metallic cross-sections
and in particular by the presence of stress concentra-
tion features. For many of the processing conditions
considered — for example thicker plain cylindrical ge-
ometries — the induced plastic strain was insufficient
to cause recrystallisation.

e Recrystallisation was reproduced successfully in
laboratory-scale cored castings of CMSX-4 of wall
thickness 1.5 mm, for which the modelling indicated
that the total plastic strain accumulated during cool-
ing to ambient temperature was ~2.5%. Castings of
greater wall thickness were not prone to recrystallisa-
tion.

e Recrystallisation was reproduced successfully in com-
pression testpieces subjected to deformation at ele-
vated temperatures. Plastic deformation of less than
~0.3% in the range 1100°C and 1300°C was sufficient

(1

2]

3

[4

[5

6

[7

B

[9

to cause recrystallisation. Deformation at 20°C and [10]

750°C required substantially greater deformation of

1.5% and 2.5%, respectively, or more. (11]

o With further development, such modelling will aid [12]

turbine blade designers to assess the casting strains
induced around intricate features, such as blade cool-
ing holes and fillets, and thus to set design criteria to
avoid recrystallisation in investment cast blades.
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