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Abstract 

During casting of aluminum alloys, the partially solidified material is submitted to thermally induced 
strains that can lead to severe casting defects such as hot tearing. In this work, carried out in the frame 
of the European project VIR[CAST], the rheological behavior of a partially solidified AA5182 
aluminum alloy has been investigated in order to provide constitutive equations to predict hot tearing 
in DC casting. Shear and tensile experiments have been performed using specific experimental 
devices and procedures previously designed for Al-Cu alloys. In the small strain (<0.2) and high solid 
fraction (>0.8) domain investigated here, the mushy zone is coherent. The stress-strain behavior is 
therefore dominated by the viscoplasticity of the solid phase, but exhibits a significant strain 
hardening. The behavior of the mushy zone is modeled by a compressible constitutive equation in 
which an internal variable, C, representing the state of cohesion of the mush, is introduced. The model 
accounts for solid fraction, stress state, strain rate and strain effects. The parameters that govern the 
evolution of C with strain have been determined and appear to be comparable to those for Al-Cu 
alloys.  
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1. Introduction 

 Aluminum alloys solidification processes such as direct chill (DC) casting, laser welding or 
mould casting involve thermally induced deformations arising from the contraction that occurs during 
solidification and subsequent cooling. These strains can lead to severe casting defects such as 
macrosegregation, porosity and hot tearing. In order to understand the formation of these defects, 
important modeling efforts have been undertaken recently directed towards the development of 
thermomechanical models for the solidifying alloy [1,2], rheological models of the mush [3-5] and hot 
tearing criteria [6]. In particular, constitutive equations of the mush have been developed taking into 
consideration the main aspects that are pertinent to the prediction of hot tears [7,8]. The mushy zone is 
treated as a compressible porous material saturated with liquid exhibiting some strain hardening. The 
effect of the liquid on the solid skeleton is taken into account via a hydrostatic pressure term. 
Moreover, the partial cohesion of the mushy zone is introduced as an internal variable of the 
constitutive model. In order to develop relevant constitutive equations, experimental data are required 
during solidification for different stress states, solid fractions and strain rates. These data have been 
obtained recently in shear, compressive and tensile conditions for an Al-Cu alloy using devices 
specifically developed for this purpose [9, 10, 11].  

 In particular, the shear and tensile behaviors are believed to be of great importance for the 
generation of the casting defects, although compressive stress states can also play a role in specific 
regions of the casting. In addition, in DC casting the accumulated strain is relatively small (in any 
case less than 20%) and the strain rates are low (less than 10-3 s-1). This paper describes briefly the 
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theoretical aspects of the rheological model and presents the experimental identification and 
validation of the model parameters for an industrial AA5182 alloy in these two stress states. 

2. Rheological model of the mush 

The model that has been adopted for the rheological behavior of the mush is summarized 
hereafter. More details can be found in [8] and [10]. The mush is treated as a viscoplastic porous 
medium saturated with liquid. The effect of strain on the behavior of the partially solidified alloy is 
accounted for by introducing an internal variable C that describes the state of cohesion of the mush. 
Since the evolution of this internal variable is considered as stress state dependent, it also accounts for 
the different mechanical response between tensile and compressive stress states. The constitutive 
equation is written on the effective solid stress tensor 

sσ̂
 that allow us to take into account the 

mechanical effect of the liquid phase:  

 Iσσ  ˆ ls p+=  , (1) 

where σ  is the total (applied) stress tensor and lp  is the liquid interstitial pressure. An associated 

viscoplastic potential Ω is describing the relation between the effective solid stress tensor and the 

solid phase plastic strain rate tensor p
sε
&  (normality rule): 
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The external variables for the constitutive model are taken to be ( )Tp
s ,,ˆ εσs &  where T is the 

temperature. The internal variables are the triplet of scalars (gs, C, s). The variable gs is the solid 
volume fraction. The variable C represents the cohesion of the solid skeleton and varies between zero 
and unity. The variable s has the physical dimension of a stress and it represents an average isotropic 
resistance to plastic flow offered by the solid phase that constitutes the solid skeleton. In the present 
version of the model, s is taken as constant (s = s0). This is because we are solely interested in the high 
temperature behavior of the solid, for which it is reasonnable to assume that the plastic flow resistance 
is constant [7]. Here the viscoplastic potential writes simply: 

 ( )CgTP sss ,,,,σΩ=Ω  . (3) 

where sP  and sσ  are the effective pressure on the solid skeleton and the Von Mises stress 
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 2σ  with sS  denoting the solid phase deviatoric effective 

stress tensor ( IσS sss P+= ˆ ). The expression of the viscoplastic potential proposed in [8] introduces 

both the softening effect of liquid saturated pores via a pressure dependent term and the effect of 
partial cohesion via the internal variable C : 

 
( )( ) ( )

1
2 20 2

2 3

01

n

s sn A P A
n Cs

ε σ
+

Ω = +
+

&
, (4) 

where 1/n is the strain rate sensitivity (taken as temperature independent here), and 

0 exp
Q

A
RT

ε  = − 
 

&  is the strain rate reference. The functions A2 and A3 depend solely on the solid 

fraction and are taken from the literature on dry porous viscoplastic materials [12-13]. Now applying 
Eq. (2) to the expression of the viscoplastic potential (Eq. (4)) leads to the expression of the strain rate 
tensor as implemented in the Finite Element code ABAQUS: 
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For the fully solid material, for which gs =1 and C =1, the effective stress is the applied stress (Eq. 
(1)). Moreover, for gs =1, 2 0A = , 3 1A = , and Eq. (5) reduces to the classical power-law of a purely 

viscoplastic dense material. Note also that when the liquid pressure effect is neglected, the effective 
stress reduces to the applied stress. 

The evolution equation for the partial cohesion internal variable assumes that both the increase of C 
by interlocking of dendrites and its decrease by rearrangement scale with a scalar measure of the 
macroscopic plastic strain rate e

ε&  for any type of stress state so that : 
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Where p
s

p
se εε &&& :

3

2=ε  and ( )Xg s ,α  and ( )XgC s ,
*  are two functions of the solid fraction and of 

the stress triaxiality  ssPX σ= . We have shown that in the case of pure shear (X=0), ( )0,sgα  and 

( )0,*
sgC  are increasing functions of the solid fraction and can be considered as rate independent in 

first approximation [7,8].  

3. Experimental identification in pure shear 

 The dependence of α  and C* with the solid fraction is first determined in a pure shear stress-
state. The apparatus used for shearing the alloy in the solidification range is shown in Fig. 1. More 
details concerning the experimental procedure can be found in [9]. The alloy is initially melted in the 
container and the inner cylinder is inserted in the liquid that subsequently fills the gap between the 
two cylinders. The melt is then cooled down at a constant rate (-5 to –20°C/min) and the test is carried 
out at a given temperature. The solidification path is calculated with a numerical model accounting for 
back diffusion in the solid [14]. Shearing of the mush is imposed by the vertical translation of the 
inner cylinder at a constant speed and thereby constant strain rate. Grooves were machined on the 
surfaces of the two cylinders in order to avoid slippage. 

Resulting
strain

MushyAlloy

Inner cylinder

Outer cylinder

Imposed displacement

 

Fig.1. Translation Shear Test. 

The experimental determination of the characteristic functions ( )0,sgα  and ( )0,*
sgC  is carried out 

on a grain refined AA5182, so that the dendrites can be considered as equiaxed. Therefore, isotropy of 
the behavior is assumed. The results of isothermal shear experiments are plotted in terms of Von 
Mises stress as a function of the macroscopic strain (Fig. 2). Stress-strain curves exhibit a gradual 
increase of stress with strain before reaching a viscoplastic plateau after 10 to 20% strain. Since 
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typical strains in DC casting do not exceed 10 % in any case, modeling of the shear behavior requires 
to take into account this strain hardening. The rate effect on the maximum stress at a given 
temperature (solid fraction) as well as the effect of the solid fraction at a given strain rate are clearly 
demonstrated in fig. 2. Stress increases both with increasing strain rate and increasing solid fraction. 
The strain rate sensitivity value 1

n
 is characteristic of the fully solid phase behavior. 
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Fig. 2. Shear behavior of AA5182. Von-Mises stress-strain curves for different solid fractions and strain rates. 
Experimental data (thick curves) and comparison with analytical predictions (thin curves).  

The determination of the functions α  and C* that govern the shear behavior of the mushy zone at 
small strains is carried out by using isothermal experimental data. For isothermal and constant strain 
rate conditions, Eq. (6) can be integrated analytically. In order to describe the behavior of the solid 
phase (values of s0 , A, Q, and n), we use the results of Van Haaften et al. [15] given in table 1. 

A set of (C*, α )  values is determined for each couple of strain rate and solid fraction. Averaged 
values of C* and α  are calculated for each solid fraction considering that these functions are strain 
rate independent. The functions:  
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    and  ( ) ( )* ,0 1 1

p

S sC g g= − −    (7) 

describe reasonably well the evolution of C* and α  with the solid fraction in pure shear, with a small 
number of fitted parameters (values in table 1). With these functions, good agreement between 
experimental stress-strain curves and predictions is obtained (fig.2) 

 

Solid state parameters  

(Al-Cu: ref. [10], AA5182: ref. [15]) 

Mushy zone parameters 

(Al-Cu: ref [10], AA5182: this work) 

 

Alloy 

s0 (MPa) A (s-1) Q (kJ/mol) n p  
0α  1α  coal

sg  k 

AA5182 52 2.65 107 125 3.44 0.315 10.54 0.0632 0.94 100 

Al-Cu 4.77 9. 105 154 3.8 0.11 4.45 1.07 10-2 0.94 100 

0.95 ; 10-3s -1 

0.95 ; 10-3.5s -1 

0.88 ; 10-3.5s -1 

0.81 ; 10-3.5s -1 



Presented at the Inter. Conference on Advances in Solidification Processes, June 7-10 2005, Stockholm. 

 

Table 1 : Rheological parameters of the model in the fully solid state ( 0 , , ,s A Q n ) and in the mushy zone 

( 0 1, , , ,coal
sp g kα α ) for Al-Cu and AA5182 alloys. The solid state parameters are obtained from [15] 

4. Tensile behavior 

The tensile behavior of AA5182 alloy during solidification is studied using the apparatus shown in 
Fig 3. 

Thermocouple

Induction

Mold
(alumina)

Sample

Water cooling

Thermocouple

Induction

Mold
(alumina)

Sample

Water cooling

 
Fig. 3. Schematic of the tensile experimental set-up 

 
 The initially solid specimen is completely remelted by induction in its middle part, and then 
cooled at a controlled cooling rate of 1°C s-1 until the temperature in the centre reaches a certain value 
in the solidification range. At this temperature, measured by a thermocouple, deformation is carried 

out at constant velocity ( 10.02mm s− ). Fig. 4 shows typical stress-displacement curves at various 
solid fractions. Displacement is not transformed into strain since the length over which deformation 
takes place is not known. The curves show that maximum stress increases with increasing solid 
fraction. In addition, two different behaviors are observed: at solid fraction higher than 0.94, the 
tensile stress is quite large before fracture but drop very rapidly at fracture; whereas for smaller solid 
fractions, it reaches lower values and decreases more gradually. This solid fraction of 0.94 seems 
therefore to correspond to the coalescence solid fraction at which solid bridges start to form 
extensively between the dendrites [16]. However, the material is brittle owing to the presence of 
residual liquid films. 

 Since there is a strong inhomogeneity of the temperature, solid fraction and, consequently, 
strains in the tensile sample, the model response is computed with the help of numerical simulations 
using the FEM code ABAQUS 6.4. The present model (Eq. (5) and Eq. (6)) has been implemented 
using the user subroutine CREEP, [17], and neglecting the liquid pressure. The thermal field is 
considered as an input and does not evolve with time. As shown in Fig. 5, only one quarter of the 
specimen was modeled and axi-symmetric conditions were used. The axial displacement was imposed 
on the upper boundary of the computation domain and the sum of the reaction forces was recorded. 
The mesh was refined close to the center of the specimen where most of the deformation takes place 
owing to the solid fraction gradient. On the other hand, it was rather coarse in the fully solid region. 

 In order to account for coalescence in our model, the rheological function α  is taken as: 

( )
1/3

0 1 1/3
( , 0) exp ( )

1
coalS

S S S
S

g
g X k g g

g
α α α< = + −

−
    (8) 

where coal
Sg  is the solid fraction at which coalescence starts.  
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 As demonstrated by Fig. 4, the experimental results are reasonably well reproduced for the 
following couple of parameters: 94.0=coal

Sg  and 100=k . Note that the fracture of the sample is not 

(and can not be) predicted, since the model does not include any fracture criterion. However, knowing 
the displacement at the onset of fracture from our experiments, the computation of the axial strain 
field for this displacement can help to determine the tensile ductility of the mushy zone (see Fig.5). 
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 g s = 0.86  T  = 570°C

 g s = 0.94  T  = 548°C

 g s = 0.92  T  = 555°C

 g s = 0.96  T  = 540°C 

 
Fig. 4. Tensile behavior of AA5182 (stress vs displacement) at various solid fractions. Experimental (thick 

curves) and numerical simulation results (thin curves) 
 

 

 

 
Solid fraction field Axial strain field 

Fig. 5. Solid fraction field (left) used for numerical simulations (input) and computed axial strain field (right) at 
the onset of fracture (result) for gs=0.96 in the center of the sample (one quarter of the sample section is 
shown). 

 

5. Comparison with Al-Cu alloys 

 Qualitatively, the rheological behavior of AA5182 during solidification is very similar to that 
of Al-Cu model alloys (see references [9,10,11]), both in shear and tensile stress states. 
Quantitatively, the stress levels are comparable but stresses are, on the whole, higher for AA5182 than 
for Al-Cu in similar conditions. A first explanation for this difference is the fact that the fully solid 

tensile 
axis 
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AA5182 exhibits higher viscoplastic stresses at high temperature. However, this might not be a 
sufficient explanation: in the case of pure shear, the 5182 alloy exhibits also higher values of α  and 
C*, for the same solid fraction. In order to illustrate this case, Fig. 6 shows an example of comparison 
between the present experimental data and the model response for two different sets of parameters 
(see table 1) :  
1. Solid state parameters of AA5182, values of mushy zone parameters (α  and C*) obtained for Al-
Cu alloys (ref. [10] and table 1). 
2. Solid state parameters of AA5182, mushy zone parameters obtained for AA5182 (Eq. (7), table 1).  
The agreement with the measured curves is good in the two sets of parameters, though much better 
with the second one (see Fig.6).  
Concerning the tensile behavior, the values of the parameters coal

Sg  and k, determined with the help of 

numerical simulations, are the same for the two alloys.  
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Fig. 6. Shear behavior of AA5182. Comparison between experimental and model results with two different sets 
of parameters and for two different strain rates and solid fractions. Thick solid lines: experimental curves; thin 
solid lines: model curves with AA5182 mushy zone parameters; dashed lines: model curves with Al-Cu mushy 
zone parameters. 

6. Concluding remarks 

 The rheological behavior of a partially solidified AA5182 has been investigated in shear and 
tension. Results are well reproduced by a phenomenological model previously developed for Al-Cu 
alloys. This model introduces the concept of cohesion of the solid skeleton. The effect of cohesion on 
the rheological behavior is taken into account by the internal variable C. Its evolution is governed by 
two functions and accounts for strain effects and stress state dependence. Here we have presented the 
model identification in two particular stress states, shear and tension. In order to generalize the model 
to any stress state, the dependence of C with the triaxiality X could be determined by making simple 
assumptions based on compressive testing (see [18]), in a similar way to what has been done for Al-
Cu alloys [10].  

 This work shows that the method used to characterize and to model the rheological behavior 
of Al-Cu model alloys can be applied without major difficulties to an industrial alloy. Moreover, the 
discussion in part 5 shows that, in a first approximation, the functions α and C* that govern the 
evolution of C can be written with the same form and parameters whatever the alloy. Consequently, 
the rheological behavior of an alloy could be estimated using Al-Cu data, provided that the behavior 
of the solid alloy at high temperature is known (parameters A, Q, n and s0). However, if a good 

0.81 ; 10-3.5s -1 

0.95 ; 10-3s -1 
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accuracy is needed, experimental identification of these functions is required for every specific alloy, 
at least in pure shear and tension. Moreover, the tensile ductility of the mushy zone might be very 
sensitive to the alloy composition and microstructure, which requires to perform tensile testing on 
every alloy if one is interested in the maximum tensile strain or strain rate that can sustain the mush. 
Such information would be needed to propose a hot tearing criterion [6, 19, 20]. 
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