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AbstractÐA two-dimensional model has been developed for the description of the formation of austenite
from lamellar pearlite in steel. The di�usion equation is solved in a small domain representative of a regu-
lar structure of lamellar pearlite. The solution is obtained using a ®nite element method with a deforming
mesh and a remeshing procedure. The main assumption of the model is the condition of local equilibrium
at the interfaces, including the curvature contribution and mechanical equilibrium of surface tensions at
the triple junction where the ferrite, austenite and cementite phases meet. The velocity of the interface is
deduced from a solute balance which involves the concentration given by the phase diagram modi®ed by
the Gibbs±Thomson e�ect. The model is used to predict the dissolution rate, the shape of the interface as
well as the concentration ®eld in austenite as a function of temperature. Both the transient and steady-
state regimes are described. The model is ®rst applied to a model alloy whose physical properties allow the
problem to be solved for a wide range of lamellae spacings and temperature. Subsequently, the Fe±C sys-
tem is examined and the numerical results are compared with experimental data from the literature.
Finally, it is shown that the steady-state growth breaks down and the transformation occurs with a di�er-
ent regime at high superheating. # 1998 Acta Metallurgica Inc.

1. INTRODUCTION

Reaustenitization is the reverse transformation to
austenite which occurs in low-alloy steels when the

eutectoid temperature is exceeded [1]. For steels in
the pearlitic condition, the ®rst step in the trans-

formation is the nucleation of austenite at the inter-
faces between the pearlite nodules, followed by

growth of the austenite into the lamellar
structure [2±4]. At temperatures for which the trans-

formation proceeds, the nucleation of austenite
occurs very rapidly and the atomic mobilities are
usually large enough for austenite growth to be

accomplished by di�usional processes [4, 5]. It is
likely that growth is controlled by volumeÐrather

than surfaceÐdi�usion e�ects, since the reaction
temperature is signi®cantly higher than for pearlite

growth. The mean distance over which di�usion
occurs is of the order of the interlamellar spacing,

which is of course determined not by the reausteni-
tization reaction itself, but by the kinetics of the

eutectoid reaction when the pearlite structure was
previously formed [6]. As a consequence, the kin-
etics of reaustenitization depends mainly upon the

scale of the microstructure and composition of the
steel under consideration, as well as the magnitudes

of the appropriate di�usion coe�cients.
At the onset of the reaustenitization reaction

from the pearlite structure, the austenite growth

rate is a maximum at the places where the di�usion
distances are the shortest, i.e. near the lines where

the ferrite (a), austenite (g) and cementite (y) phases
meet. At moderate superheatings, there is however
evidence [2] to suggest that a uniform growth vel-

ocity or ``steady-state'' regime is attained, consistent
with the net concentration of the pearlite being
equivalent to that of austenite far from the trans-

forming region. Therefore, the steady-state dissol-
ution rate of the pearlite must be closely related to
the shape of the a/g and y/g interfaces. These
depend upon surface tension e�ects, which in¯uence

the thermodynamic equilibrium at the interfaces
according to the local curvature via the Gibbs±
Thomson e�ect and also dictates the angle between

the interfaces at the lines where the three phases
meet.

2. BACKGROUND

The theoretical [4, 5] and experimental [2, 3, 7±9]
aspects of reaustenitization kinetics have been
widely discussed in the literature. Several numerical

models have also been proposed, generally for
spheroidized ferrite±cementite microstructures [10±
13]. The dissolution of pearlite has received less

attention, possibly because of the need to estimate
the interphase boundary shapes which are adopted
during the transformation. Following Brandt's
approach for the eutectoid reaction [14], Speich and
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Szirmae [4] have developed an analytical model for
pearlite dissolution kinetics with a simpli®ed sol-

ution for the concentration ®eld in austenite.
However, severe assumptions were made by these
authors: (i) the model accounts only for the ®rst

two terms in the Fourier series expressing the con-
centration ®eld, (ii) the interfacial ¯ux condition is
not handled in a consistent manner along the inter-

faces, and (iii) the interfacial curvature and thus
capillarity e�ects are not treated. These assumptions
gave rise to large deviations from experimental

results.
In the same paper, the authors proposed a second

model giving the pearlite dissolution rate as a func-
tion of temperature and interlamellar spacing.

Although this simple model is based on a mean dif-
fusion distance only, it gives results which are in
better agreement with the experimental data. Hillert

et al. [5] proposed a similar model which also
accounts for the di�usion in the ferrite. More
recently, some attempts have been made to solve

the problem numerically using a two-dimensional
®nite di�erence model [15]. However, the boundary
conditions at the moving interface were not expli-

citly accounted for. It is well established though
that two conditions must be imposed at a moving
interface whose position is unknown and part of
the problem: one is dictated by the equilibrium

phase diagram and the second is the solute ¯ux bal-
ance.
The purpose of the present paper is to present

details of a model describing the transformation
process of pearlite into austenite and to show the
results of calculations for typical reaustenitization

conditions. The problem is solved for a bidimen-
sional geometry characteristic of a regular lamellae
structure. The di�usion equation and interfacial
boundary conditions are considered in order to esti-

mate the dissolution rate, the shape of the interface
as well as the concentration ®eld in austenite as a
function of temperature. As will be shown, the

model describes both the transient and the steady-
state regimes. The model is presented in the next
section, whereas the numerical details are given in

Appendix A. It is ®rst applied to a model alloy and
then to the Fe±C system in Section 4.

3. DETAILS OF THE MODEL

The model describes the growth of the austenitic

phase into a lamellar structure of pearlite as illus-
trated on Fig. 1. It is based upon the equations
describing the di�usion of carbon and the displace-

ment of the interface. The following assumptions
are made:

. Nucleation of austenite is assumed to occur at

the grain boundary between cementite and ferrite.

The nucleation overheating is assumed to be

zero.

. The microstructure shows a periodicity character-

ized by a lamellae spacing l. This assumption

reduces the problem to the small domain illus-

trated on the right-hand side of Fig. 1. This spa-

cing is given by the conditions of pearlite

formation on cooling and thus, unlike eutectic or

eutectoid models, is not part of the problem.

. The angle b formed by the interfaces at the junc-

tion point of the three phases is determined by

the mechanical equilibrium of the surface tensions

sg/a, sg/y and sa/y (see Fig. 1).

. The carbon concentration in cementite (stoichio-

metric compound) and in ferrite (very low solubi-

lity) is constant during the transformation, so

that growth is governed by the volume di�usion

of carbon in austenite only.

. The temperature is uniform in the calculation

domain. This assumption is justi®ed since the

thermal di�usivity is much higher than the solute

di�usivity in metals.

. The condition of local equilibrium is applied, so

that the carbon concentration at the interfaces

can be deduced from the phase diagram for a

given temperature modi®ed by the curvature con-

tribution.

. Capillarity is accounted for, via the local curva-

ture modifying the thermodynamic equilibrium.

The Gibbs±Thomson coe�cient is assumed to be

independent of crystallographic orientation.

The problem is thus reduced to the solution of

the di�usion equation of carbon in the austenite

domain only:

div�Dg grad c� � vref � grad c � @c
@ t

�1�

where c and Dg are the concentration ®eld and the

di�usion coe�cient of carbon in austenite, respect-

ively. The term vref is the velocity of the reference

frame with respect to the microstructure. It can be

set to zero or taken equal to the mean velocity of

the g/a and g/y interfaces.

Under the assumptions made, equation (1) has to

be solved for the austenite region with appropriate

boundary conditions. At the boundaries of the peri-

odic domain, a zero-¯ux condition is applied. At

the moving g/a and g/y interfaces, whose position

and shape are part of the problem, two conditions

must be applied. The ®rst one is an essential con-

dition. It involves imposing the interfacial concen-

trations, cg/a(T,K) and cg/y(T,K),{ given by the

phase diagram modi®ed for the local curvature, K,

via the Gibbs±Thomson coe�cient:

cg=a�T ,K � � c1g=a�T ÿ Gg=aK � �2�{The symbol cg/a denotes the interfacial concentration at
the g/a interface in the g phase.
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cg=y�T ,K � � c1g=y�T ÿ Gg=yK �: �3�
Here, c1g=a�T � and c1g=y�T � are the concentrations
given by the phase diagram for a planar interface at

temperature T (see Fig. 2). The curvature K is posi-
tive when the g domain has a convex shape locally
and is negative in the case shown in Fig. 2.

The second condition is related to the conserva-
tion of carbon ¯uxes:

�Dg grad c�g=� � n �vg=� � n�c�=g ÿ cg=��
with � �a or y �4�

where n is the unit vector normal to the interface

pointing out of the g domain (see Fig. 1), vg/n the

absolute interface velocity and (c�=g ÿ cg=�) the jump

of concentration at the corresponding g/n interface

(see Fig. 2).

The solution of equation (1) with boundary con-

ditions (2) and (3) is obtained numerically using a

®nite element method with a deforming mesh and a

remeshing procedure. A schematic calculation

domain is illustrated on Fig. 3 together with the

®nite element mesh at two stages of the transform-

ation. The details of the ®nite element formulation

are given in Appendix A.

Fig. 1. Schematic representation of the transformation of pearlite into austenite.

Fig. 2. De®nition of the concentrations which are imposed at the interface as boundary conditions of
the di�usion problem. Please note that DT g=�

R depends on the local curvature of the corresponding
interface g/n (n = a or y). Therefore it is not the same on the right- and left-hand side of the phase dia-

gram (K< 0 for a concave g/n interface).
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The concentration ®eld obtained at each time

step allows the horizontal velocity of the interface
to be deduced from a consideration of equation (4):

vg=�x �
Dg

�c�=g ÿ cg=��
�
@c

@x

����
g=�
� ny
nx

@c

@y

����
g=�

�
�if nx 6� 0�, � � a or y: �5�

The partial derivatives refer to the two components
of the concentration gradient in austenite at the
interface, whereas nx and ny are the components of

the normal vector n. The latter is calculated for
each interfacial node by averaging the normal vec-
tors of the two neighbouring edges.

From a knowledge of the velocity of the inter-
face, the mesh can be deformed. At each time step
the nodes are moved horizontally by a quantity

ux Dt, where Dt is the time step and ux the relative
velocity. The latter is calculated using the following
expression:

ux�x 0,y0� � x 0

x g=�� y0� �v
g=�
x � y0� ÿ vref � �6�

where (x0,y0) are the node coordinates and xg/n(y0)

and vg=�x � y0� refer to the position and the horizontal

absolute velocity of the g/n interface at ordinate y0.

The nodal point located at the triple point (g/a/y
junction) and the two neighbours located on each

side of it are moved by the same quantity. The lat-

ter is estimated by calculating the mean velocity of

the two neighbours. This procedure allows the

angle b at the interfaces g/a and g/y at the triple

point to be maintained during the calculation, con-

sistent with the surface tensions being in mechanical

equilibrium. This angle is imposed at the beginning

of the calculation by displacing horizontally the

nodal point located at the triple point. Accordingly,

the initial domain is a very thin rectangular layer

with a small cusp at the triple point.

The curvature at each nodal point is estimated

from the normal unit vectors of the two neighbour-

ing edges using the following expression:

K � div n: �7�
Knowledge of K allows the interfacial concen-

Fig. 4. Phase diagrams used in the calculation for the model alloy (a) and the Fe±C alloy (b).

Fig. 3. Calculation domain and boundary conditions used in the model. The ®nite element mesh is
stretched in the x-direction according to the local velocity of the interface.

JACOT et al.: MODELLING OF REAUSTENITISATION3952



trations to be updated according to expressions (2)

and (3) and enables a new iteration to begin.

Large deformations of the mesh can lead to a

degeneration of the elements, and in order to

avoid such e�ects a remeshing procedure is per-

formed as soon as one of the triangular elements

exhibits an angle smaller than a given criterion

(88). The new mesh is obtained from the nodal

points located on the border of the domain

according to a frontal algorithm [16]. The concen-

tration ®eld at the new mesh points is deduced

from the shape functions and the concentrations at

the previous mesh points.

The operations performed during a time step can

be summarized as follows:

1. estimation of the interface curvature

(equation (7));

Fig. 5. Concentration ®eld at steady state during the reverse eutectoid transformation for the model
alloy (l= 0.4 mm, DT= 38C, b = 1208, Dg=3�10ÿ10 m2/s, 926 nodes, CPU time (HP-PA8000 work-

station): 15 min).
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2. calculation of the concentration ®eld in the
actual domain by solving equation (1) with

boundary conditions (2) and (3);

3. calculation of interfacial node velocities

(equation (5));

4. update the position of the nodes (equation (6));

5. remeshing (if necessary).

4. RESULTS AND DISCUSSION

4.1. Application to a model alloy

Prior to the application of the model to the aus-

tenitization problem, a number of numerical tests
were carried out in order to validate the formu-
lation, to check for the presence of numerical errors

Fig. 6. Position of the interface (a) and velocity pro®le (b) at di�erent times during the transformation
of the model alloy (same conditions as in Fig. 5).

Fig. 7. Curvature overheating and carbon concentration in austenite at the interface for the model alloy
at steady state (l= 0.4 mm, DT= 108C, b= 1208). c0 is the eutectoid concentration.
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associated with the deformation of the mesh and
®nally to assess the accuracy of the numerical

formulation [17]. For the speci®c situations tested,
it was found that the scheme was quite accurate

and did not introduce signi®cant errors.

A model alloy has been used for studying the

behaviour of the model when the di�erent par-
ameters are changed. The physical properties of this

alloy have been chosen in order to avoid the case of

microstructures showing a lamellae which are much
thicker than the y lamellae. The phase diagram was

thus almost symmetric with a eutectoid composition
®xed at 55% (see Fig. 4(a)). The di�usion coe�-

cient, the Gibbs±Thomson coe�cient and the angle

b were set to 3� 10ÿ10 m2/s, 2� 10ÿ6 m K and 1208,
respectively.

The set of axes was attached to the triple point.

Its velocity, vref, which is not constant during the

transformation, was recorded during the entire cal-
culation in order to be able to reconstruct the dis-

placement. The resolution was pursued until a
steady state was reached (constant shape of the g/a
and g/y interfaces). The calculations were performed

with an overheating varying between ÿ5 and
+208C. The use of negative values will be justi®ed

further in the text.

The concentration ®eld obtained at steady state is

shown on Fig. 5 for a 38C overheating and a
0.4 mm interlamellar spacing. The calculations were

performed in the domain illustrated by the FE
mesh and the full picture was obtained using two

operations of symmetry. The numbers correspond

to various isopleths of the concentration ®eld. As
can be seen, the concentration gradient in the g
phase along a given g/n interface is fairly constant.

This allows the whole interface to move with a con-
stant velocity along the x-axis, regardless of the

ordinate y. The achievement of a steady state is
demonstrated on Fig. 6 where the position of the
interface and the horizontal velocity have been

plotted as a function of time. It can be deduced
that the duration of the initial transient is about

0.3 ms and that the steady-state velocity is
0.69 mm/s under such conditions.

The fact that the concentration gradient along an
interface is fairly constant regardless of its distance
to the triple point can be found in the curvature

contribution: near the triple point, where the di�u-
sion distance is short, the concentration di�erence

between the two interfaces is greatly reduced by the
high positive curvature, whereas the opposite occurs

in the regions far from the triple point. The e�ect
of the local curvature on the thermodynamic equili-
brium is shown on Fig. 7 for a 108C overheating.

The curvature contribution to the overheating,
DTR=GK, plotted as a function of the ordinate y

of the interface allows the overheating available for
di�usion, DTc, to be deduced:

DTc � T ÿ Teut ÿ GK � DT ÿ DTR �8�
where DT is the imposed value of overheating
(DT = TÿTeut), T the transformation temperature

and Teut the eutectoid temperature for a planar
interface. Note that the curvature contribution,

DTR, at the triple point is ill-de®ned and has been
obtained by averaging the curvature contributions
at the two neighbouring interfacial nodes. Figure 7

shows that the di�usion overheating near the triple
point (y = 0) is considerably reduced by the posi-

tive curvature. (It can even be slightly negative.) On
the other hand, near the centre of the lamellae, the
interface has a negative curvature which increases

the di�usion overheating and thus compensates for
the longer di�usion distance. The interfacial concen-

Fig. 8. Steady-state dissolution rate vs overheating calculated for two interlamellar spacings of the
model alloy.
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trations, cg/a(T,K) and cg/y(T,K), deduced from the
phase diagram modi®ed for the local curvature K,

have also been represented on Fig. 7. As can be
seen, cg/a and cg/y vary continuously along the inter-
face and show large deviations from the values for

a planar interface, c1g=a and c1g=y (dashed horizontal
lines). This result emphasizes the importance of the
curvature e�ects in the dissolution process.

The steady-state transformation rates obtained at
various overheatings have been represented on
Fig. 8 for two interlamellar spacings. The positive

dissolution rate observed for the negative values of
overheating is due to the mechanical equilibrium
which is imposed at the junction point. From the
beginning of the calculation, the austenitic domain

has a concave shape which enhances the dissolution
by a diminution of the equilibrium temperature.
As expected, the dissolution rate increases with the

overheating and decreases with the interlamellar
spacing. The v(DT) relationship is almost linear
with a slight increase of the slope at high over-

heating.

4.2. Application to the Fe±C alloy

The model has been applied to the pearlite dissol-

ution using more realistic physical properties for
the Fe±C alloy. The phase diagram used for the cal-
culation is illustrated on Fig. 4(b). The other nu-

merical data were l= 0.5 mm, Dg=1.4� 10ÿ12 m2/s,
Gg/a=Gg/y=2�10ÿ78C m. The calculations were
performed with a Gibbs±Thomson coe�cient Ga/y

varying between 0.1�10ÿ7 and 2�10ÿ78C m.{
This allowed the in¯uence of the angle b
(1778 > b > 1208) on the dissolution kinetics to be
studied. The nominal composition was taken equal

to the eutectoid concentration, c0=0.761%, for all
calculations.
The concentration ®eld in austenite at steady

state for DT = 18C and b= 1668 is shown on
Fig. 9. The numbers correspond to various isopleths
of the carbon concentration ®eld. As can be seen,

the concentration gradient along a given interface is
fairly constant, regardless of the distance to the tri-
ple point. This is due again to the curvature contri-
bution and ensures a steady state.

Similar calculations were made using di�erent
values of b in the range 1208±1778 and the same
conditions (DT = 18C, l = 0.5 mm). The results are

shown on Fig. 10 where the steady dissolution rate
and the interface shape are plotted as a function of
b. As can be seen, the in¯uence of the angle b is

strong. The dissolution rate is reduced by a factor
of 2 when b varies from 1208 to 1778. A small angle
b induces a hollow-shaped interface which increases

the concentration gradient and makes the curvature
more negative near the centre of the lamellae. The

di�usion rate and the e�ective concentration di�er-
ence between the g/y and g/a interfaces are much

higher in that case and consequently the dissolution

rate is faster than for a ¯at interface.

The steady-state dissolution rates obtained with

two di�erent values of b have been represented on

Fig. 11 as a function of overheating. The results are

compared with experimental data extracted from lit-

erature for a eutectoid steel showing a similar pear-

lite spacing [2]. The predicted dissolution rates are

in good agreement with the experimental one. The
values obtained with a 1208 angle are, however,

Fig. 9. Carbon concentration ®eld in austenite during the
steady-state dissolution of a pearlitic microstructure
(l= 0.5 mm, DT= 18C, b = 1668, Dg=1.4�10ÿ12 m2/s,

1075 nodes, CPU time: 9 h).

{Ga/y, Gg/a and Gg/y were estimated according to Kramer
et al.'s work [18] and other values for solidi®cation [19].
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slightly too high. This result indicates that the angle

is probably closer to 1668 than to 1208. This
assumption seems to be con®rmed by the microgra-

phy of Fig. 12 showing an austenitic nodule grow-

ing in a pearlitic matrix: the interface between
austenite and pearlite is observed to be quite

smooth [2]. For reasons which are given below, con-

verged steady-state FEM results could not be
obtained for the Fe±C system beyond an overheat-

ing of 38C. Therefore, comparison with the exper-

imental results of [2] could only be made over a
small overheating range in Fig. 11.

The simulation results have also been compared

in Fig. 11 with the solution of Speich and Szirmae's
analytical model which was mentioned in Section

2 [4]. The concentration ®eld given by this analyti-

cal solution, which consists of an approximate sol-
ution of the di�usion equation, has been plotted on

Fig. 13. The parameters used are the same as those

of Fig. 9 (l = 0.5 mm, DT = 18C) so that a direct

comparison between the two ®gures is possible. In

the analytical model, the shape of the interface is

given by the isopleths c1g=a (0.754%) and c1g=y
(0.764%) of the concentration ®eld. Those lines

mark the boundary of the a and y regions (white)

on Fig. 13. The relative depth of the a and y lamel-

lae which are obtained with the analytical model

are very di�erent from those given by the phase

diagram and used in the numerical model. This

di�erence is due to the use of a second-order sol-

ution only, which is too approximate to describe

properly the concentration gradient together with a

correct lamellar depth. Moreover, the curvature

contribution is totally neglected in the analytical

model. These severe limitations lead to dissolution

Fig. 10. Steady-state dissolution rate (a) and interface shape (b) during the dissolution of pearlite as a
function of the angle b at the triple point (l= 0.5 mm, DT = 18C).
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Fig. 11. Steady-state dissolution rate of a pearlitic microstructure as a function of the overheating (Fe±
C alloy, l = 0.5 mm) for two values of the angle b. Values extracted from Roberts and Mehl's exper-
imental work [2] and results of Speich and Szirmae's analytical model [4] are also represented. The sec-
ond analytical result is also based upon Speich and Szirmae's approximation but the concentrations at
the centre of the lamellae were taken from the FE model for b = 1208 (i.e. the curvature contribution

is included).

Fig. 12. Austenite nodule growing at the interface between two pearlite colonies in a eutectoid steel [2].
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kinetics which are much lower than the numerical

and experimental values (see Fig. 11).

In order to estimate the error associated with the

ignorance of the curvature term, the analytical
model of Speich and Szirmae was then applied

using as a boundary condition the interfacial con-

centrations cg/a and cg/y obtained with the numerical
model for the nodes located at the centre of the

lamellae (upper and lower right edges of the calcu-
lation domain) and b = 1208. These values, which

account for the curvature e�ects since they are

functions of the local curvature in the FE model,
were used as boundary conditions of the analytical

di�usion model. As can be seen on Fig. 11, the ana-

lytical dissolution kinetics obtained under such con-
ditions is in better agreement with the experimental

data than the kinetics of the original analytical

model. This result demonstrates again the import-
ance of considering the capillarity e�ects in a di�u-

sion model describing pearlite dissolution.

The concentration ®eld obtained with the numeri-

cal model for a higher value of overheating
(DT = 58C) is shown on Fig. 14. The steady state

was not reached for this calculation because of a
degeneration of the mesh. The rapid growth in the

region of the triple point at the beginning of the

transformation leads to very hollow interfaces and
to almost horizontal segments on the g/y boundary.

The deformation procedure of the mesh, which is

based on horizontal displacements only, does not
allow such a geometry to be handled and the calcu-

lation had thus to be stopped.

The numerical problem and the shape of the

interface observed at large overheating seem to indi-
cate that the transformation can proceed according

to another regime. This regime would consist of a

rapid transformation of the a phase, after which re-
sidual cementite lamellae would remain in the auste-
nitic matrix. The dissolution of these carbides

would occur later on by a mechanism of lateral dif-
fusion. The di�erence between the transformation
regimes at low and high overheatings is illustrated
on Fig. 15. The second regime (Fig. 15(b)) has been

predicted by Hillert et al. [5] and observed exper-
imentally for coarse pearlitic microstructures
(Fig. 16) [20]. Under such conditions, Akbay et al.'s

one-dimensional growth model [12] is probably
more appropriate than the present one.
The transition from one regime to the other is

probably associated with the typical length scales
for the di�usion and microstructure. As the over-
heating increases, the di�usion layer in austenite

ahead of the interfaces decreases. If it becomes
smaller than the interlamellar spacing, the lateral
exchange of carbon may not be su�cient for a
steady state to be achieved and the second regime

will take place.

5. CONCLUSION

A new two-dimensional FEM model has been
used to describe in a realistic way the dissolution
mechanisms of a eutectoid lamellar microstructure.

The dissolution rate, the shape of the interface and
the concentration ®eld in austenite have been calcu-
lated for the initial transient and for the steady

state. Compared with the former analytical models,
it provides several improvements, in particular the
consideration of the surface tension e�ects and the
prediction of the interface shape. The model has

Fig. 13. Concentration ®eld obtained with Speich and Szirmae's analytical model [4] (DT= 18C,
l = 0.5 mm, Dg=1.4�10ÿ12 m2/s).
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been applied successfully to the Fe±C alloy for

small values of overheating (less than 38C). The dis-

solution rates are in good agreement with the exper-

imental values from the literature.

However, the model did not allow the transform-

ation at higher overheating to be described. Under

such conditions, the transformation is likely to pro-

ceed with a di�erent regime which involves a rapid

dissolution of the ferrite followed by a lateral dis-

solution of the residual cementite in the austenitic

matrix. Further investigations would be needed in

order to con®rm the existence of this regime and to

better understand the transition from one regime to

the other. This would however require the modi®-

cation of the front tracking algorithm used in the

present study. On the other hand, the present

model could be applied to the remelting of a eutec-

tic microstructure without any modi®cation.

A better knowledge of the physical properties

would allow more realistic pearlite dissolution rates

to be obtained. Moreover, in order to estimate the

total dissolution time of a pearlitic microstructure,

Fig. 14. Non-steady-state concentration ®eld obtained with the FEM model for a 58C overheating
(b = 1668, l= 0.5 mm, Dg=1.4� 10ÿ12 m2/s, t = 0.12 s).
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the nucleation phenomena should also be con-
sidered. In spite of these limitations, the model

allowed the understanding of the dissolution mech-
anisms to be improved, in particular the importance
of the curvature e�ect and the possible existence of

two dissolution regimes.
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APPENDIX A

The ®nite element formulation is based on a set of shape
functions, fi(x,t), which allow the concentration ®eld to
be expressed by linear combinations:

c�x,t� �
XN
i�1

ci�t�fi�x,t� �A1�

where ci is the concentration at node i and N is the total
number of nodal points. The time dependence of the
shape functions is speci®c to the procedure of mesh
deformation [21]. Multiplying equation (1) by a test func-

Fig. 15. Presumed dissolution regimes of a pearlitic microstructure: coupled regime at low overheating
(a) and non-coupled regime at high overheating (b).

Fig. 16. Microstructure showing the formation of austenite
in pearlite (after 26 s at 7308C) [20].
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tion fj, integrating over the calculation domain O and
applying the Orstrogradsky theorem gives:�
G
D grad c � nfj dGÿ

�
O
D�grad c � grad fj � dO

�
�
O
�vref � grad c�fj dO �

�
O

@c

@ t
fj dO:

�A2�
The discretization and assembling procedure yields the fol-
lowing matrix equation:

b� ��Vref � ÿ �D��c � �M�dc
dt
� �U�c �A3�

with

bj �
�
G
D�grad cfj � � n dG �A4�

Dji �
�
O
D�grad fi � grad fj � dO �A5�

Mji �
�
O
�fifj � dO �A6�

Vref,ji �
�
O
�vref � grad fi �fj dO �A7�

Uji �
�
O

�
@fi

@ t
fj

�
dO: �A8�

Introducing in equation (A8) the following expression [21]:

@fi

@ t
� ÿgrad fi � u �A9�

where u is the relative velocity of the nodes in a deforming

mesh, the matrix equation (A3) can be rewritten as:

b� ��V� ÿ �D��c � �M�dc
dt

�A10�

with

Vji �
�
O
��vref � u� � grad fi �fj dO: �A11�

In the model the y-component of the velocity is always

zero. In addition the velocity can be expressed by the fol-

lowing combination of shape functions:

ux �
XN
k�1

ux,kfk: �A12�

Since the coordinate system also moves horizontally,

equation (A11) can be rewritten as:

Vji �
XN
k�1
�vref � uk�

�
O

@fi

@x
fjfk dO: �A13�

The solution of equation (A10) is estimated with the fol-

lowing explicit scheme:

b� ��V� ÿ �D��ct � �M� c
t�Dt ÿ ct

Dt
: �A14�

The time step Dt is determined with the stability criterion

for an explicit scheme and a lumped mass matrix:

Dt<
1

4

�
L2

D

�
min

�A15�

where (L2/D)min is the minimum over the entire domain of

the ratio given by the edge length, L (minimum of the

three edges for each element) and the di�usion coe�cient

D calculated as a function of the local concentration.
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