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Abstract—A two-dimensional (2D) model has been developed for the prediction of diffusive phase
transformations (e.g. = to y). For that purpose, the diffusion equations are solved within each phase («
and y) using an explicit finite volume technique formulated for a regular hexagonal grid. The discrete a/y
interface is represented by special volume elements «/y. An 2 volume element undergoes a transition to
an o/y interface state before becoming y. This procedure allows us to handle the displacement of the
interface while respecting the flux condition at the interface. The model has been applied to the
austenitization of a hypoeutectoid plain carbon steel during heating. Simulated microstructures showing
the dissolution of ferrite particles in the austenite matrix are presented at different stages of the phase
transformation. Specifically, the influence of the microstructure scale and of the heating rate on the
transformation kinetics has been investigated. Reverse TTT-diagrams calculated with this 2D model are
compared with experimental results from the literature and with the predictions of a simpler one-
dimensional (1D) front-tracking calculation. Finally, it is shown that interface instabilities leading to the
formation of dendrites can also be reproduced by such a model. Copyright © 1997 Acta Metallurgica Inc.

1. INTRODUCTION to be applied to the calculation of transformation
kinetics during continuous heating. Nevertheless,
such models are quite limited in their applications,
because the experimental data only apply for a given
initial microstructure.

An alternative approach to the prediction of
diffusive phase transformations is to solve the
diffusion equation in a representative domain of the
microstructure where the evolving phases (ferrite,
cementite and austenite) are described. This has been
achieved in one dimension (1D) for the prediction of
homogenization times [11] and reverse TTT-diagrams
[12]. Some attempts have also been made in two
dimensions (2D) for the calculation of microstruc-
tures [13, 14]. However, such 2D models have not
explicitly accounted for the boundary conditions at
the moving interface. It is well established that two
conditions must be imposed at the interface. One is
dictated by the equilibrium phase diagram, and the
second is the solute flux balance.

The present paper describes a general two-phase
model for the prediction of microstructural evolution
in a material which undergoes a diffusive phase
transformation « to y. The diffusion equations in the
o and y phases are solved in 2D using an explicit finite
volume scheme. The boundary conditions at the a/y
boundary are accounted for using special interface
— — elements. The flux condition at the interface is
+To whom all correspondence should be addressed. replaced by a phase-field evolution (in this case, the

The modelling of microstructure formation in
materials processing has progressed markedly over
recent years, especially in the fields of recrystallized
structures [1-4], of grain structure formation in
solidification processes [5, 6] and of dendritic growth
[7]. Modelling provides images that reproduce actual
microstructures. It has also become increasingly
important in predicting microstructural defects and
final mechanical properties. However the complexity
of the solid-state transformations and the presence of
multiple phases and morphologies has limited the use
of these techniques in the field of heat treatment of
steels. The first step in modelling the heat treatment
of steels is to consider the phase transformations
occurring upon heating, because the state of the
microstructure after heating (volume fraction, con-
centration homogeneity and density of the austenite
grains) has a great influence upon the kinetics of the
phase transformation during cooling and on the
subsequent mechanical properties of the steel. Most
of the models predicting the kinetics of microstruc-
ture formation during austenitization of steels are
based upon experimental TTT diagrams and some
kind of additivity principle [8-10]. Such principles
allow the data obtained under isothermal conditions
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volume fraction of «) spread over one mesh size. The
model has been applied to the austenitization of
hypoeutectoid steels during heating. The results of
the model are compared with those obtained from a
front-tracking 1D model and with experimental
results extracted from the literature. In addition, this
2D approach is shown to be generally applicable by
reproducing dendrite formation during solidification
as a result of interface instabilities.

2. MODELLING

Assuming that the x/y transformation is only
governed by solute diffusion, the kinetics can be
described by the following diffusion equations:

C;i’ =div D,(¢c,, T) grad ¢,

inQ, =9, orQ (1)

5e, o
D;r[g}* - D[;‘n}* = va(c — ¢F) at 6Qy, (2)

t is the time, ¢, is the carbon concentration in the
phase v (x or ) and D, the associated diffusion
coefficient, v, is the normal velocity of the ufy
interface ¢Q,, (i.e. v, = v-n), n is the normal to this
interface pointing outwards, Q., ¢ and ¢ are the
concentrations at the interface in the « and y
domains, respectively. The symbol * denotes values
taken at the interface whereas &/0n is the normal
derivative (i.e. 0c/0n = gradc-n). The boundary
condition set for the external boundary of the domain
Q=0Q, u Q,is that of a closed system, whereas the
initial condition for the concentrations in each
domain is given by:

ax, 1=0) = c*(T) A3)

where ¢¥(7)) is the concentration at the initial
temperature 7;. It is given by the phase diagram
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Fig. 1. Representation of the 1D domain [0, L] (spherical
geometry), of the solute profiles in the « and y regions and
of the corresponding equilibrium phase diagram.

assuming equilibrium. Notice that the diffusion
coeflicient in each phase, D,, can be concentration-
and temperature-dependent. The temperature history
of the specimen, 7(¢), is a given function of time and
is considered to be uniform in the calculation domain.
This can be justified by the fact that thermal diffusion
is much faster than diffusion of solute atoms.

This well-posed diffusion problem has been solved
for both 1D and 2D. The results of the 1D solution
are used to validate the 2D algorithm.

2.1. 1D model

In the 1D model, a “typical’” volume element of the
microstructure composed of both phases « and 7 is

b

Fig. 2. Illustration of the hexagonal grid used to solve the solute diffusion equations in 2D. The arrow
represents the flux Ji; going from neighbour 1 to the central cell i. The right part illustrates the layer of
interface cells which separate the « and y domains.
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Fig. 3. (a) Concentration fields at four different times (0, 720, 1200 and 1400 s) as predicted by the 2D
model using the 100 x 500 hexagonal grid shown on the right. The values indicate the carbon
concentration of the vertical isopleths (dotted lines). The plain line represents the o/y interface. (b)
Comparison of the concentration profiles predicted by the 1D model (continuous lines) and the 2D model
(dotted lines). Heating rate 0.1°C/s, nominal carbon concentration of the alloy 0.49 wt%.

considered. In Fig. 1, the top right illustration
shows these two domains for a spherical (or
cylindrical) geometry. However, the model can
also be applied to cartesian geometries. This
initial volume fraction of « is given by the lever
rule:

__ ¢ (T}) — <
S= oy — D) “)

where ¢, is the nominal concentration of the alloy
and ¢(7;) and ¢, (7;) are the concentrations in
both phases given by the phase diagram for the
temperature 7;. Using x for the space variable
and s(t) for the position of the wofy interface
(see Fig. 1), equations (1) and (2) can be written
as:

dey _ 1 @ ,n0c\ _ Jaforxel0,s(:)
o (x D > ' = {y for x e[s(¢), L] ©)

éc, ac,
oo sy — pf L9 i
v(ck — ¢¥) D.,,< ax) Da< 5

The geometrical parameter m is equal to 0, 1 or 2 for
the planar, cylindrical and spherical geometries,
respectively. The boundary conditions at the external
boundary of the domain and the initial conditions are
given by:

>* for x = s(¢). (6)

dc,

az X—‘—O,L (7)

¢.(T) for x € [0, s(t)]

¢(x,0) = {CY(T.) for x e [s(2), L] ®

Equations (5-8) have been solved using a finite
differences method and a procedure which follows the
movement of the «/y interface. The details are given
in the Appendix.
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Fig. 4. Final austenitization temperature, 4;, as a function

of the heating rate as calculated for a Fe-0.49 wt% C steel

using the 1D model. The various curves correspond to
different sizes of the calculation domain.

2.2. 2D Model

Modelling the two-phase diffusion in two dimen-
sions is much more complex than the 1D equivalent,
because the geometry of the interface must be solved
together with the diffusion equation. Such a problem
may lead to instabilities of the interface (formation of
cells or dendrites). In such cases, interfacial energy,
interfacial energy anisotropy and elastic energy of
coherent interfaces play important roles in con-
trolling the interface morphology. Austenitization of
normalized hypoeutectoid steels proceeds with stable
afy boundaries, and the interfacial energy contri-
bution can be neglected. This assumption has been
made in the model presented here.

The problem is solved using a regular hexagonal
grid (see Fig. 2(a)). A hexagonal volume element (or
cell) is attributed to each nodal point and can take
three different states: o, y or “interface”. A layer of
interface cells always separates y from « volume
elements, which are not allowed to be adjacent (see
Fig. 2(b)). The solute concentration in each of these
cells is given by ¢;, where i is the cell index. The
interface cells are characterized by three additional
variables: ¢f* and ¢i*, the solute concentrations at the
interface in the o and the y phases, respectively, and
[, the volume fraction of phase «. Since local
equilibrium is assumed at the «/y interface, ¢/* and
¢i* are given by the phase diagram, whereas the
volume fraction /7 is calculated from the lever rule:

L = 9
f/ C}V* . C?*’ ( )

tAlthough k refers to a local numbering of the
neighbouring cells (k =1, 6) and not to their global
number, it will be kept for the sake of simplicity instead
of an index j(k).

where ¢ is the concentration in the interface
cell.

The solute diffusion between the cells is described
using an explicit finite volume approach. A mass
balance is achieved for each cell i according to the

concentration of the six neighbouring cells:

AC,' °
V3= El ST (10)
with
V=>@a2andszi (11)
2 \/g

where a is the lattice parameter of the hexagonal
network of cells, ¥ and S are the surface and the edge
length of the cells, As is the time step, Ac¢; is the
variation of carbon concentration in cell i and J, is
the flux of solute atoms from the kth neighbouring
cell to the central cell i (k = 1, 6)t. This solute flux
is calculated according to the state of the neighbour-
ing cells.

(a) The cells k£ and i belong to the same phase v («
or ),

(12)

Ju= D&, T) " with ¢ = %

(b) The cell / belongs to phase v whereas cell k
belongs to the interface:

a* — ¢ a*+a

with ¢ = %= (13)

Jki = Dv(c_v T)

(c) Both cells belong to the interface:

_ ak 0k N T
T = FoDu(@ TYF 5 4 (L=J)Dy (&, T)F
with

7% kg £2] % - 3 13
C_V=Ck ;Cr ,C-1=Ck _561 andﬂ =f1 +fA (14)

2

In order to avoid border effects, periodic boundary
conditions are applied to the cells located near the
edges (e.g. the cells located on the right boundary of
the domain are the left neighbours of the cells located
on the left boundary). The time step, Az, is given by
the stability criterion of the explicit scheme: it is
calculated for the maximum tabulated value of the

diffusion coefficient, Dy.x, and is given by:
aZ

At < D

(15)

as would be for a regular cartesian mesh. At each
time step, the new carbon concentration of the
interface cells is converted into a new phase fraction
using equation (9). If f* falls below zero during
heating, the interface cell is attributed to y. All the «
neighbour cells which are adjacent to this cell are
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Fig. 5. Evolution of the microstructure during the austenitization process as calculated with the 2D

model for a heating rate of 10°C/s. The microstructure is shown at 0, 2.5, 5 and 8s, the white

zones representing ferrite regions which are progressively dissolved in the austenitic matrix (in dark).

The values indicate the carbon concentration of the isopleth lines. (12.5 pm x 12.5 um hexagonal
mesh, 40 000 cells.)

changed to interface cells so that « and y cells are
never adjacent.

3. AUSTENITIZATION OF NORMALIZED
HYPOEUTECTOID CARBON STEELS

The mechanisms and the kinetics of the austeni-
tization process in normalized hypoeutectoid car-
bon steels have been widely discussed in the
literature [15-17]. It appears that the transform-
ation may be considered to occur in two steps: the
pearlite dissolution and then the transformation of
proeutectoid ferrite into austenite. The first step
occurs above the eutectoid temperature and is
governed by the dissolution kinetics of cementite
and by the carbon diffusion in the lamellae of
ferrite. It is relatively rapid since the diffusion
distances are short. The second step occurs within
a temperature range which is limited by the
eutectoid line and the «/y transition temperature of
pure ironf. The maximal amount of austenite that

{This limit temperature of 912°C is based upon the
assumption of an «/y interface at equilibrium.

can form at any temperature is given by the phase
diagram and the lever rule: it reaches 100% at Ae3
(the (x+ y)/y line of the equilibrium phase dia-
gram). The kinetics of transformation are dictated
by the diffusion of carbon atoms from the
solute-rich austenite regions (coming from pre-
viously pearlitic zones) to the proeutectoid ferrite
grains. Therefore, the solute flux balance at the
ferrite/austenite interface must be considered.

The kinetics of the austenitization process is thus
mainly controlled by the second stage of the
transformation, i.e. by the transformation of «
grains through the diffusion of carbon. In the
models presented here, it has been assumed that the
time required for the dissolution of pearlitic
lamellae is negligible in comparison with the
duration of the second reaction. Accordingly, the
microstructure at the end of the first stage
(austenite regions and ferrite grains) is used as the
initial state for the model. The amount of austenite
corresponding to former pearlitic regions is calcu-
lated using the lever rule and the nominal
concentration of the alloy.
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4. APPLICATION OF THE MODEL TO THE
AUSTENITIZATION OF HYPOEUTECTOID STEELS

4.1. Validation of the 2D algorithm

The 2D model was first applied to a 1D problem
in order to compare the results with the front-track-
ing 1D model. A rectangular domain was initially
subdivided into two zones (ferritic and austenitic)
according to a vertical planar interface. Taking the
start of the austenitization process at the eutectoid
temperature and assuming equilibrium, the initial
carbon concentration was set to 0.8 wt% (eutectoid
composition) in the austenite and to 0.02 wt% in the
ferrite (¢, see Fig. 1). The initial volumetric phase
fraction of ferrite was determined from the nominal
composition of the alloy (0.49 wt%) using the lever
rule (equation (4)). The temperature of the domain
was then increased at a constant rate of 0.1°C/s.
Assuming local equilibrium at the «/y interface, the
thermal history and the phase diagram directly give
the carbon concentration ¢, *(¢) and ¢, *(¢) of the
interfacial cells.

Figure 3(a) shows the concentration fields in the
domain at four different times together with the
hexagonal mesh used for the computations. The
vertical lines and associated values are the carbon
isopleth lines in the austenite region. As can be seen,
the interface remains stable and planar during the
entire transformation process. Concentration profiles
are compared with profiles obtained with the 1D
model in Fig. 3(b) at seven different instants (from 0
to 1440 s). As expected, the agreement is excellent.
The only difference that can be observed is for the
concentration jump at the interface. It is spread over
one layer of the mesh in the 2D model, whereas it is
a sharp transition in the case of the front-tracking 1D
model. It can be concluded that the 2D model

Cy

Fig. 6. Schematic diagram showing the perturbation of the
interface of a ferrite grain which is dissolved in a matrix of
austenite. A local increase of the interface velocity during
heating (concave perturbation of the « grain) induces a
decrease of the concentration gradient in the y phase and
thus slows down the interface (i.e. stable interface).

correctly predicts the kinetics of the phase transform-
ation and does not introduce interface instabilities in
this particular case. Moreover, the numerical
diffusion at the interface is limited to one layer
thickness.

4.2. 1D computation of reverse TTT diagrams

The 1D spherical model has been applied to the
prediction of the austenitization kinetics of a
0.49 wt% carbon steel using various heating rates
(0.05,0.22, 1, 3, 10, 30, 100, 300, 1200, 2400°C/s). The
initial conditions were determined according to the
procedure described in the previous section. In order
to predict more realistically the transformation
kinetics, the temperature- and concentration-depen-
dencies of the diffusion coefficient of carbon in
austenite were accounted for according to Badeshia’s
approach [18]. The diffusion coefficient of carbon in
ferrite was assumed to depend only on the
temperature. The following expression was used [19]:

D.(T) = Do.exp(—Q./RT) with
Dy, =2 x 10-*m?s and Q, = — 84100 J/mole. (16)

Calculations were performed with a regular mesh of
1000 nodes and a variable domain size (from 2 to
20 pm).

The temperature corresponding to complete
transformation of the o to y, A, has been plotted as
a function of the heating rate in Fig. 4, which is
referred to as a reverse TTT diagram. It can be
observed that A;is limited by two extreme values. At
very low heating rate (0.05°C/s), the carbon
concentration remains uniform in both phases during
the transformation and the austenitization ends just
above A.; (770°C, see Fig. 1). At high heating rate, the
transformation ends at 912°C, the transition tempera-
ture from o to y of pure iron (the temperature 7, in
the phase diagram of Fig. 1). Since both ¢f and c*
vanish near this temperature, this allows the interface
velocity to increase up to very high values and the
transformation to be completed extremely rapidly.
However, the local equilibrium assumption is
probably no longer valid in such a situation, because
the attachment kinetics of atoms at the interface
becomes important. Therefore, this calculation
should only be considered as a lower limit for A4;.

In order to investigate the effect of the initial
microstructure on the transformation kinetics, the
computations have been repeated using several
domain sizes, L, ranging from 2 to 20 um. The
resulting reverse TTT diagrams have also been drawn
in Fig. 4. It can be observed that the initial size of the
ferritic domains has a strong influence on the
transformation kinetics. For example, changing the
ferritic zones from 2 pm to 20 um increases A; from
775°C to 870°C for a heating rate of 10°C/s. For an
initial eutectoid temperature equal to 725°C, the
temperature interval of the completed transformation
is increased by a factor of three (50°C for the finest
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Fig. 7. Final austenitization temperature, 4: (a) and
homogenization temperature, Hi, (b) as a function of the
heating rate as calculated for a Fe-0.49 wt% C steel. The
results of the 1D model have been obtained for a 4 um
domain assuming cartesian, cylindrical or spherical geome-
try. The results of the 2D model have been obtained with
the initial microstructure shown in Fig. 5(a)
(12.5 um x 12.5 ym hexagonal mesh of 10 000 cells). These
calculated curves are compared with the experimental result
[20].

microstructure compared to 145°C for the coarsest
one). This illustrates the importance of the initial
microstructure for the modelling of the phase
transformation kinetics. It also demonstrates the
utility of simulation for complementing the sparse
experimental data that are usually available in the
field of transformation kinetics.

4.3. 2D calculations

The first step of a 2D calculation is the production
of a realistic initial microstructure. This was achieved
numerically according to the following procedure.
Ferrite and pearlite spherical grains were grown from
randomly located nucleation sites until the calcu-

lation domain was totally filled. The nuclei were
randomly attributed to ferrite or pearlite with a
probability given by the desired phase fraction. The
nucleation centre of a given grain was located in a cell
j of the enmeshment used for the diffusion
calculation. The time # at which this grain could
capture another cell i/ was given by:

f=1+dyfo (17)

where v is a constant growth rate, 7, is the nucleation
time of grain j and d; is the distance separating the
cells 7/ and j. Considering all the nucleated grains, a
cell / will be effectively captured by the grain & given
by the smallest 7 value, i.e. f; = min {£}. The phase
the grain £ belongs to is of course attributed to the
captured cell i. In order to account for the periodic
boundary conditions, each nucleated grain was
duplicated in the eight rectangles surrounding the
calculation domain. The result of the initialization
procedure is shown in Fig. 5(a) for 0.49 wt% carbon
steel. This 12.5 um x 12.5 um microstructure was
generated using a grain density of 1 x 10 nuclei/m?.
The light zones represent the ferritic phase (41% of
the surface) while the dark matrix corresponds to
austenite (previously assumed to be the pearlite
grains).

The 2D calculations were performed using a
100 x 116 mesh with a parameter ¢ = 0.5 ym and a
time step of 107*s. The result of a simulation
obtained with a constant heating rate of 10°C/s is
shown in Fig. 5. The concentration field in the
microstructure is represented at four different times
(t=0,2.5, 5 and 8 s) with different grey levels. Figure
5(d) shows that the specimen is totally austenitic after
8s and that the carbon concentration is nearly
homogeneous (between 0.5 and 0.55 wt%). During
the transformation process, it can be seen that the
ferrite grains shrink but keep their shape. The corners
of the grains become smooth, because diffusion
occurs more rapidly in these regions. There is no
evidence of interface instabilities. It should be
emphasized that the application of the model did not
produce any unstable interface, even at the highest
heating rate. The situation, which is similar to the last
solidification of liquid droplets, appears to be
physically stable, as schematically shown in Fig. 6. If
a small perturbation developed at the x/y interface
(e.g. local concavity of the o particle), the flux of
carbon flowing from the y matrix would be reduced.
This would also slow down the velocity of the a/y
interface and thus tend to eliminate this perturbation.

4.4. 2D computation of reverse TTT diagram

Similar 2D calculations have been performed using
various heating rates (0.05, 0.22, 1, 3, 10, 30, 100, 300,
1200, 2400°C/s) in order to construct a reverse TTT
diagram. The result shown in Fig. 7(a) can be
compared with simulated curves obtained with the
1D model and with an experimental curve for a Ck45
steel taken from [20]. The 1D calculations were
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Fig. 8. Initial microstructures of a Fe-0.49 wt% C steel used for the 2D computations of Fig. 5(a) and
taken from Ref. {20] (b).

performed using a 4 um domain size and for the
cartesian, cylindrical and spherical geometries. The
predicted curves are almost superimposed for the
spherical and cylindrical cases while small differences
can be observed for the cartesian geometry. This
means that a cylinder of ferrite transforms at about
the same rate, df,/ds, as a spherical particle having
the same initial volume fraction of «. This
observation suggests that 2D simulations might be
adequate instead of more time-consuming 3D
calculations.

As can be seen in Fig. 7(a), the 1D and 2D models
reproduce the shape of the experimental curve quite
well. This good agreement was achieved using the
initial microstructure shown in Fig. 8(a). As can be
seen, this microstructure is much finer than that
observed in the sample used to measure the
experimental curves [20] (Fig. 8(b)): the appearance

of the ferrite and pearlite regions is about the same
in both figures but there is about a factor 5 in the
scale! This means that the model predicts transform-
ation kinetics which are too slow with respect to the
experiment. This result is somewhat surprising
because one can envisage various mechanisms which
have not been considered in the simulation and which
would make the calculated transformation kinetics
even slower: the attachment kinetics of atoms at the
interface, or the time required to nucleate austenite
and to transform pearlite. The faster transformation
rate observed experimentally might be explained by
the presence of some alloying elements like Mn
(0.74%) and Cr (0.16%). Such substitutional atoms
induce a deformation of the f.c.c. lattice which
increases the diffusivity of interstitial atoms. Another
mechanism could be the diffusion at grain boundaries
which would enhance the rate of the transformation.

Fig. 9. Equiaxed dendrite predicted from the 2D diffusion calculation using isothermal conditions (0.5°C

undercooling). The physical properties of the succinonitrile-1.3% acetone alloy (liquidus slope equals

—2.8 K/wt%, partition coefficient equals 0.1) have been used. The enlargement shows the tip of the
dendrite superimposed with the hexagonal mesh (150 pm x 150 um mesh of 40 000 cells).
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4.5. Homogenization

The diffusion model was used to describe the
homogenization of the carbon concentration that
takes place in the austenite after the completion of the
phase transformations. The homogenization of
austenite is very important for the quenching of steels
since the local carbon concentration dictates the
microhardness of the martensite in the final structure.
The prediction of the homogenization temperature,
H;, requires the definition of a criterion. In the
present investigation, the sample was considered to
be homogeneous when the difference between the
maximal and minimal carbon concentrations was
smaller than 0.5% of the nominal composition.
Figure 7(b) compares the results obtained for
continuous heating with the 1D and 2D models with
an experimental curve taken from [20]. The
temperature, H, at which the sample is homogeneous
has been plotted as a function of the heating rate. The
temperatures predicted with the 2D model are
somewhat higher than those obtained with the 1D
model. This result occurs because some very large
ferrite or pearlite grains may be present in the initial
2D microstructure. Thus, the homogenization can
take a longer time to complete than for the 1D model,
which assumes an average grain size. At very low
heating rates, the carbon concentration remains
uniform in both phases during the transformation
and the sample is already homogeneous when the
ferrite is dissolved. In this case, similar results are
obtained with the 1D and 2D models. It can be
observed that the experimental temperatures, H,
measured at a low heating rate are higher than those
obtained from the simulation. The criterion for
homogenization, however, is not well defined in the
experiments of [20], and other alloying elements
might also affect the results by increasing the rate of
diffusion.

5. APPLICATION TO OTHER DIFFUSIVE PHASE
TRANSFORMATIONS

An attempt has been made to apply the model to
the solidification of a melt from a small spherical
solid nucleus. The undercooling was assumed to be
constant (i.e. isothermal solidification). Some exper-
imental data relevant to this case are given in the
figure caption. As illustrated in Fig. 9(a), the
calculation in this case reflects the unstable nature of
the solid-liquid interface and generates an equiaxed
dendrite. The grey levels shown in this figure
correspond to the solute concentration: because the
partition coefficient & is smaller than unity, the solid
dendrite has the smallest concentration. (It is uniform
since there is no curvature contribution and the
undercooling is constant.) The grey background
corresponds to the nominal concentration of this
alloy and the white regions near the dendrite interface
are the solute-rich liquid zones. Since there is no
stabilizing curvature term, the geometry and the

spacing of the dendrite arms are dictated by the
six-fold symmetry of the mesh and the size of the
volume elements. The enlargement of one of the tips
of the dendrite shown in Fig. 9(b) clearly shows that
its radius of curvature is of the same order of
magnitude as the mesh size. The isoline outlining the
dendrite shape corresponds to a volume fraction of
solid f=0.5 (i.e. the interface cells are precisely
located on the dendrite contour). Algorithms
accounting for the curvature of the interface are being
developed in order to produce more realistic
dendrites. If successful, such a method could be an
alternative to the phase-field technique [7] since the
diffuse interface in this case is only spread over one
mesh size.

6. CONCLUSIONS

A numerical model has been developed in order to
calculate the solute diffusion in a two-dimensional
and two-phase domain, using special interfacial
elements. The solute flux condition at this moving
boundary and the equilibrium condition were
calculated. This 2D model has been applied to the
austenitization of hypoeutectoid carbon steels during
continuous heating. Compared with similar 1D
models, this technique offers several advantages:
realistic microstructures with a wide distribution of
particle size and morphology, the use of a digitized
micrographs as a starting microstructure, and more
realistic output of microstructures during the
transformation process in the form of 2D-images.

Some differences between calculated and exper-
imental transformation kinetics have been noticed. In
particular, it has been shown that reverse TTT
diagrams can be described accurately by the diffusion
models, providing the size of the microstructure is
refined compared with experiment. Without changing
the microstructure scale, the diffusion coefficient
would have to be multiplied by a factor of 25 in order
to obtain agreement with the experiment. This
discrepancy requires additional investigation. A
possible explanation might be that additional
alloying elements enhance the diffusion of carbon.
Another explanation might be enhanced diffusion at
grain boundaries. These two mechanisms could be
accounted for in the 2D model without too many
difficulties.

It has been shown that the same 2D model can be
used to simulate other diffusive phase transform-
ations. A simulation of equiaxed solidification was
attempted. Instability of the interface was demon-
strated but it appears that it is necessary to introduce
curvature effects if realistic morphologies and growth
kinetics are to be simulated. Such developments are
under way and could possibly be an alternative to the
phase-field method [7].

Finally, the choice of a hexagonal grid to solve the
diffusion equation has been dictated by the fact that
this model will be ultimately coupled with a
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Monte-Carlo simulation of the austenite grain
growth [1]. This will provide a comprehensive model
for the predictions of the different mechanisms that
are observed during the austenitization process:
formation of austenite, homogenization and grain
growth.
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APPENDIX

The FDM solution of the 1D problem follows a
procedure similar to that given in [11]. A uniform mesh of
M nodes is defined for the o region (0 < x < s(¢)), whereas
the y region (s(z) < x < L) is mapped with (N — M) nodes.
The Mth node coinciding always with the position of the
interface, the nodal points move with time and the two grids
in the o and y regions have variable mesh sizes. In order to
solve the diffusion equations in both phases, the variable
domains x € [0;5(¢)] and x € [s(¢);L] are transformed into
fixed domains € € [0;1] and 6 € [0;1]:

x

s(1)

and

6_x—s(t)

=T =50y A

JACOT AND RAPPAZ: TWO-DIMENSIONAL MODEL PREDICTION OF TRANSFORMATIONS

In the « phase the concentration field c.(x, ¢) is transformed
into ¢ [x(e, 1), 1] and the following new partial derivatives
can be introduced:

de.| [ée] [oc] 1 [oe
ox | | G | [ox]|  sy| dc |
ac. Gex dc, Ji acy e ds| dcs

[az]f[az]f[ax] [m} I:ct:|(+s dz[ ](A3)

Introducing equations (A2) and (A3) into equation (5) gives
for the a phase:

(A2)

¢y
ot

€ 0ci, m 06 10 Ccx
=3U% -I~£s2 D % T 3 [Dx a€:| (A4)

where the velocity of the interface ¢ = ds/ds has been used.
A similar equation is derived for the y phase:

oe, _ 1 — 0 L 0¢y n mbD, de.
or '3 [(L —5)0 +s](L—3s) 3

1 ¢ de,
Ry A aa[DT%} (A3)

Introduce a variable 4/ representing the average diffusion
coefficient at time step j for the mesh located between nodes
iand i — 1. It is calculated using the following relationship:

D/ + Di_,
2 9

Al = (A6)
where D/ = D,(c/, T;) is the diffusion coefficient at node {
and time step j estimated according to the nodal
concentration ¢/, the temperature 7; and the phase v.

Using the variables (¢, 7) and (y, ¢) for the domains Q. and
Q,, an implicit discretization of the solute conservation
equations gives the following relationships for the various
nodes.

Nodes i with 2 <i< M

= _ 9v+m'Df" do—d,
At s €s? 2Ac¢

l I:A{+][Cx/+1A€_ C:7A§71C§ 7Aft/—lj|. (A7)

— 2 (phase a, equation (A4)):

Nodes i with M + 1 <

d—d' _[1-0
At _[L— et

i< N — 1 (phase y, equation (A5)):

m-D|~! L‘,/.+1—CL|
L —90L 5o +s| 24

— Y
ta- ls)Aé[ R Ag'fl} A9

Node M («/y interface condition, equation 6))
AM+I Chyar — C.’;w ik ch— cho

vl = Dew =775 45 T A

(A9)

Notice that the concentration ¢, refers to the concentration
¢* at the interface in the 7 phase, the concentration ¢ being
g1ven by (k ¢iy), where k is the partition coefficient (i.e.

»_Lu (L )

Node M — 1:

C'/M—l—cfw_-]l= -1, m vl ke — s
At s €18 2A¢
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Node N (closed system):

1|: ke —dy_ i Gy —
+ > AiM 1 M 7 A/MJ| M—1 M 2j| (Alo)
s?Ae Ac Ae o — o ! 245!

At (L —syAd

(ch — ch-1). (A12)

The interface velocity v is unknown in this implicit
formulation. Therefore, iterations have to be performed in
- 24 ., order to satisfy all the equations, in particular those valid
= (¢ —ci) (ALl) for the interface position.

Node 1 (closed system):

At $?AC



