Modeling of Equiaxed Microstructure Formation in Casting

Ph. THEVOZ, J.L. DESBIOLLES, and M. RAPPAZ

A general micro/macroscopic model of solidification for 2-D or 3-D castings, valid for both
dendritic and eutectic equiaxed alloys, is presented. At the macroscopic level, the heat diffusion
equation is solved with an enthalpy formulation using a standard FEM implicit scheme. How-
ever, instead of using a unique relationship between temperature and enthalpy (i.e., a unique
solidification path), the specific heat and latent heat contributions, whose sum equals the vari-
ation of enthalpy at a given node, are calculated using a microscopic model of solidification.
This model takes into account nucleation of new grains within the undercooled melt, the kinetics
of the dendrite tips or of the eutectic front, and a solute balance at the scale of the grain in the
case of dendritic alloys. The coupling between macroscopic and microscopic aspects is carried
out using two time-steps, one at the macroscopic level for the implicit calculation of heat flow,
and the other, much finer, for the microscopic calculations of nucleation and growth. This
micro/macroscopic approach has been applied to one-dimensional and axisymmetric castings
of Al-7 pct Si alloys. The calculated recalescences and grain sizes are compared with values
measured for one-dimensional ingots cast under well-controlled conditions. Furthermore, the
influence of casting conditions on temperature field, undercooling, grain size, and microstruc-
tural spacings is shown to be predicted correctly from axisymmetric calculations with regard to

the expected experimental behavior.

I. INTRODUCTION

MICROSTRUCTURE formation during the solidifica-
tion of alloys is of prime importance for the control of
the properties and quality of cast products. In order to
predict the properties and the soundness of a casting,
empirical methods or trial approaches have been used
over the last decades. However, due to the complex in-
teractions occurring during solidification, these methods
have a rather limited use and hardly can be extended to
other solidification conditions. Furthermore, they usu-
ally give little insight into the basic mechanisms of so-
lidification. This is particularly the case in equiaxed
microstructure formation where nucleation, growth ki-
netics, solute diffusion, and grain interactions have to be
considered simultaneously with heat diffusion. For these
reasons, the modeling of solidification using powerful
numerical techniques and consideration of the basic
mechanisms of microstructure formation are becoming
important fields of development.

Since the pioneering work of Murray"! in 1959 con-
cerning heat flow calculations, most of the effort ex-
pended in modeling of casting processes has been
focused on the macroscopic scale. Energy, mass, mo-
mentum, and/or solute continuity equations have been
used to calculate temperature fields,” mold filling,"’
convection,'” or macrosegregation.”” Developments also
have been directed toward geometric modeling to handle
complex two- or three-dimensional geometries. Macro-
scopic calculations provide interesting information about
macro-defects due to insufficient feeding, holes, hot spots,
hot tearing, and macroporosity, as well as columnar mi-
crostructural parameters deduced from the isotherms.
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However, these heat flow calculations, using simplified
models to handle the phase change, cannot predict the
microstructural parameters of equiaxed structures, such
as grain size, eutectic or dendritic spacing, volume frac-
tion of each phase, or solidification morphology.

The first attempt to couple the microscopic aspects of
solidification with the continuity equation of energy was
made in 1966 by Oldfield"™ for gray cast iron. As a mat-
ter of fact, most of the work done in this area since 1966
deals with eutectic al]oys.[7‘8’9] This case, indeed, is much
simpler than that of dendritic alloys since the eutectic
grains are fully solid. Maxwell and Hellawell"” have
considered the various mechanisms of nucleation and
growth of equiaxed dendritic grains in order to analyze
the cooling curve, near to recalescence, of a small ingot
of uniform temperature. However, they performed their
analysis by making the assumption that the dendritic grain
was a solid sphere. Dustin and Kurz!""! relaxed this as-
sumption by setting the internal volume fraction of the
solid within the dendritic grain equal to a fixed value,
different from unity. When analyzing the columnar to
equiaxed transition, Flood and Hunt!'*'*) integrated a mi-
croscopic model of equiaxed dendritic growth into a sim-
plified one-dimensional calculation of the heat flow.
However, their microscopic model did not consider sol-
ute diffusion outside of the grain envelope.

The present paper ‘describes a new and general ap-
proach to the micro/macroscopic modeling of equiaxed
dendritic solidification, the aim being to remove most of-
the limitations of the previous models. Although this work
is focused mainly on dendritic solidification, it can be
applied to cutectic alloys as well. At the macroscopic
scale, the model is based upon a heat flow calculation,
neglecting convection within the melt. As described in
Section 11, the heat diffusion problem is solved using a
Finite Element Method (FEM), involving an enthalpy
formulation and an implicit scheme." At the micro-
structural scale, formation of equiaxed dendritic grains
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(Section 1II) is calculated according to a nucleation
model"™ and to a growth model which considers the
kinetics of the dendrite tips and solute diffusion
at the scale of the grain.!"®'' Coupling between the
macroscopic calculation of heat flow and the micro-
scopic calculation of the nucleation and growth of
equiaxed crystals (Section 1V) is achieved using a newly-
developed scheme which is based upon two different time-
steps: a fairly large time-step for the implicit FEM
calculation of heat flow and a much finer one for the
calculation of nucleation and growth. This two time-steps
procedure reduces the computing time, thus permitting
the handling of forms with complex geometry in two or
three dimensions. The results obtained from this micro/
macroscopic model of solidification (Section V) are
compared with the cooling curves and grain sizes mea-
sured for well-controlled one-dimensional castings of Al-
7 pct Si alloy. The influence of casting conditions upon
the temperature field and upon the final microstructure
also are emphasized in the case of axisymmetric castings.

II. MACROSCOPIC MODEL

In order to analyze microstructure formation in cast-
ings, one has to know the temperature field at each time-
step. This is achieved by using the macroscopic model
described below.

Neglecting convection in the liquid zone, the temper-
ature field obeys the nonstationary heat flow equation:

aT(x,?) _ L af(x,n)
ot

(1]

where « is the thermal conductivity, ¢, is the volumic
specific heat, L is the volumic latent heat of fusion, and
T and f; are the temperature and solid fraction fields,
respectively.

The term on the right-hand side of Eq. [1] represents
the variation in enthalpy at a given point of the casting,
the enthalpy being defined as:

Div (k(x,T) grad T(x,1) = c,(X,1)

T
H(T)=f (T dT" + L-(1 = f) (2]
0

In a standard macroscopic approach, the fraction of sol-
id, f, — and, accordingly, the enthalpy, H — will be
considered to be only temperature-dependent by using,
for example, a Scheil or Brody-Flemings model of solute
diffusion.""® In a more general approach, the enthalpy
also can be a function of time, cooling rate, grain den-
sity, etc. However, for a given heat flow, Eq. [1] states
that the variation in enthalpy is independent of the so-
lidification path. Therefore, it might be advantageous at
the macroscopic scale to choose enthalpy as the variable
rather than temperature. One then can write:

. oH(x,1)
Div(k(x,T(H(x,1))) grad T(H(x,1))) =

(3]
This enthalpy formulation offers several advantages. First,
any discontinuity associated with a sharp phase trans-

formation is removed. Second, energy can be conserved
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without taking special care as in the equivalent-specific-
heat method. Third, during cooling, any solidification
path is characterized by a strictly decreasing enthalpy.
This latter point is very important, especially during re-
calescence, as will be emphasized later.

The solution of Eq. [3] for arbitrary geometries can
be obtained only using numerical methods. Among ex-
isting techniques, the Finite Element Method (FEM) is
probably the best suited to the handling of complex shapes
(Figure 1) with a limited number of nodes, and it was
chosen here for that reason. The classical Galerkin for-
mulation of Eq. [3] for the FEM gives the following set
of nonlinear equations:

nH
—[K]-{TH)} + {b} = [M]'% (4]

where [M] is the mass matrix, [K] is the conductivity
matrix, {b} is the vector of boundary conditions, and {T}
and {H} are the vectors of temperature and enthalpy, re-
spectively, at each node of the mesh. In the enthalpy
formulation, note that the specific heat, ¢,, does not ap-
pear explicitly in Eq. [3]. Therefore, the mass matrix
[M] is constant and can be calculated only once since
the temperature-dependent specific heat and the latent
heat terms have been incorporated into the enthalpy.
The time discretization is performed using an Euler
implicit scheme. In that case, there is, in principle, no
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Fig. 1—Mesh of an axisymmetric casting used in the Finite Element
(FEM) program, 3-MOS. The left vertical edge of the mesh corre-
sponds to the axis of revolution.
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limitation on the choice of the time-step, unlike explicit
methods where time-steps are limited by a stability cri-
terion. If one assumes that the conductivity matrix, [K],
and the boundary condition term, {b}, are not varying
too dramatically with time, then the system of equations
(Eq. [4]) can be written as:

AH
[M] {_At_} + [KY AT} = {bY (5]

where {AH} is the vector of the variation in enthalpy at
each node during the time-step, Ar. The upper index in-
dicates the time at which the variables, or the matrices,
are taken.

The temperature-enthalpy relationship is linearized
using Newton’s method, restricted to the first iteration.
This is equivalent to write:

{1 = {7y + [%] -{AH) (6]

where [dT/0H] is the diagonal matrix of the derivative
dT/9H at each node. In the case of a standard macro-
scopic approach of solidification, these values can be ob-
tained readily by deriving the relationship, T(H), given
by Scheil’s equation, for example. In the micro/macro-
scopic approach which is presented, the slope 0T/9H
at each node was set to 1/c,.* (This prevents some os-

*It was verified in pure macroscopic calculations that the replace-
ment of 8T/3H by 1/c, during solidification does not induce any sig-
nificant differences in the cooling curves.

cillations which might occur near recalescence, while
keeping an overall energy balance.) The absence of fur-
ther iterations is justified as long as the time-step is suf-
ficiently small with respect to the total solidification time.
However, this physical limitation is less severe than the
one imposed by an explicit scheme.

Combining Egs. [5] and [6] gives:

[i-M+ '-[EZ]'J-AH—— {1y + {bY
a MYH KT | =) | -{AH} = —[K)-{T)' + {b}

(7]

The set of equations (Eq. (7)) is solved for {AH} using
the direct triangulation method of Gauss. In the context
of a macroscopic calculation only, the knowledge of the
new enthalpy, H; + AH,, of each node, j, permits us to
calculate the new temperature, using the unique rela-
tionship, T(H) (Eq. [2]). Thus, from the initial condi-
tions, it is possible to know, step-by-step, the evolution
of the temperature field. In the case of micro/macro-
scopic coupling, the iterative procedure is somewhat
similar. However, once the variation in enthalpy during
one time-step, Az, is known at each node, the conversion
to temperature is not achieved using T(H) (Eq. [2]), but
using the microscopic calculation of nucleation and growth
presented in the next section.

A computer program named 3-MOS (Micro-
Macroscopic Modeling Of Solidification) was written in
order to solve this problem. This program uses some
routines from the FEM library MODULEF,"” and in-
cludes a solver, as well as pre- and post-processing mod-
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ules (mesh generation, input data processing, interactive
color graphics presentation of results, and so forth). Any
two-dimensional or axisymmetric geometries involving
several different media (metal, mold, and chill) can be
treated under various boundary conditions (Dirichlet,
Neumann, and Cauchy), which can be time-, space-, and
temperature-dependent.

During solidification, an air gap can form between mold
and metal, thus invalidating the assumption of perfect
thermal contact between these two media. In order to
introduce a heat-transfer coefficient between them, a
special coupling element of zero width™ has been de-
veloped. Two degrees of freedom for the nodes located
at the given interface are allowed, the temperatures of
which are related by the condition:

m @

oT . 0T
KT — = kTP — = = he (TP - 1) (8]

where k, and k, are the thermal conductivities of media
1 and 2, respectively; 6T /dn is the temperature deriva-
tive along the outward normal, n, to the interface of me-
dium 1, T{™ is the temperature of medium m at the node
J, and h is a given heat transfer coefficient.

III. MICROSCOPIC MODEL
A. Introduction

Equiaxed solidification involves various phenomena
which have to be taken into account simultaneously. First,
nucleation occurs in an undercooled melt. Second, as
soon as a nucleus appears, it grows. This growth is con-
trolled by the thermal and solute fields and by surface
effects. Finally, when the grains are large enough, they
will interact via their thermal or solute layers. The aim
of the microscopic model is to combine nucleation, grain
growth, and grain interaction in order to have a full de-
scription of equiaxed solidification.

Under solidification conditions usually encountered in
castings, microstructure formation in alloys is controlled
mainly by solute diffusion and by capillarity effects. Ac-
cordingly, thermal diffusion can be neglected at the mi-
croscopic scale (i.e., complete thermal mixing at the
microstructure scale). Consider a small volume, V, of
uniform temperature corresponding to one mesh in a
casting (Figure 1) or to a sample in a DTA-type exper-
iment. The heat flow, Q.,,, leaving the surface, S, of that
volume element can be related directly to the change in
volumic enthalpy, AH, during the time-step, Ar. One
has:

S
Qa7+ A1 = AH = cAT = LAf, [9]

In equiaxed dendritic growth, the solid fraction, f,, can
be written as:!!”!

4
£ = n()-3 L AORAG! [10]
where n(1) is the grain density, R(?) is the mean radius
of the spherical envelope of the grain, and f,(¢) is the

internal solid fraction which corresponds to the fraction
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of solid within the spherical envelope of the crystal. Al-
though the grain density, n(z), is updated at each time-
step according to a nucleation model, its contribution,
An(t), can be neglected when deriving Eq. [10]. There-
fore, one gets:

Aﬂ0)=rdﬁ-<4w-R%0-ARaer0
4 3
+5w-R (1)-Af,(t)> [11]

where AR(?) is the increase in the radius of the spherical
envelope of the equiaxed grain and Af;(?) is the variation
in the internal solid fraction.

In order to solve the problem, one must know how
n(1), R(1), and f;(¢) change with time. The grain density,
n(r), is calculated according to a nucleation model'’*’ as
shown in Section III-B, while R(z) and f;(¢) are given
by an analytical solute diffusion model for equiaxed den-
dritic growth, recently proposed by Rappaz and Thévoz!'"
and briefly summarized in Section III-C.

B. Nucleation Model

Most of the work done on micro/macroscopic mod-
eling!">"® uses a heterogeneous nucleation law with an
extinction factor? to halt nucleation. However, at low
undercooling, the range of undercooling within which
the density of grains goes from zero to the maximum
value, ng, is so narrow that it is difficult to reproduce
experimental observations. The final grain density is al-
ways equal to the maximum value, n,, regardless of the
cooling rate. On the other hand, experimental obser-
vations”?! have shown that different inoculant particles
can become active at different undercoolings. These two
observations provided the incentive to develop a new nu-
cleation model,"*** based upon a distribution of nu-
cleation sites, each becoming active at different
undercoolings.

Figure 2 summarizes this nucleation model. At a given
undercooling, AT, (Figure 2(a)), the grain density is giv-
en by the integral of the nucleation site distribution from
zero undercooling to AT, (Figure 2(b)). As Figure 2(c)
represents the integral of the nucleation distribution, the
grain density, n;, corresponding to AT, can be obtained
directly. By this means, the new grain density is updated
at each time-step as a function of the undercooling. When
the minimum in the cooling curve is reached, i.e., when
recalescence occurs, this corresponds to the final grain
density, n, associated with the maximum undercooling,
ATmax'

As for the heterogeneous nucleation law, which is de-
fined by three parameters, the nucleation distribution also
can be characterized by two or three parameters, de-
pending upon the distribution function being used. If the
distribution of nuclei is approximated by a gaussian dis-
tribution, for example, one can define the mean nuclea-
tion undercooling, ATy, corresponding to the maximum
of the distribution, the standard deviation of the distri-
bution, AT, and the maximum density of nuclei, n,,,,
given by the integral of the total distribution (from zero
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Fig. 2-—Nucleation model used in the microscopic calculation of
equiaxed solidification. At a given undercooling (a), AT, the density
of nuclei, n,, within the liquid is given by the integral (c) of the dis-
tribution (b).

undercooling to infinite undercooling). These three pa-
rameters can be determined experimentally for each melt
by measuring the grain density (i.e., the grain size) and
the corresponding maximum undercooling at recales-
cence, AT,,., under various cooling conditions. Then,
an error function can be fitted to these measured n — AT,
points (Figure 2(c)).

C. Growth Model T

The aim of the growth model is to calculate the av-
erage grain radius, R(¢), and the internal volume fraction
of solid, fi(t), as a function of time (Eq. [11]). A model
based on solute diffusion’®'” provides the relationships
between these unknowns, and the temperature and time.
The basic hypotheses of the solute diffusion model are
(1) rapid thermal diffusion at the scale of the grain; i.e.,
the temperature is uniform and equal to the dendrite tip
temperature, T*; (2) the interdendritic liquid, where
complete mixing of solute is achieved, extends to the
spherical envelope of the grain; (3) the spherical solute
diffusion layer outside of the grain envelope is replaced
by a solute boundary layer, 8, of unknown thickness;
(4) an overall solute and thermal balance is satisfied at
the scale of the grain. The main result of the model is
that it can relate the internal volume fraction of solid,
fi, to the supersaturation,* (), via the relationship:

* = (c* — co)/(c* (1 = k) = (c* — cp)/(co- (1 — k) for low
undercooling. c* is the concentration of the liquid at the dendrite tip;
¢ is the initial concentration of the alloy; and k is the partition
coefficient.

fi = Q- f(Pe) [12)

where Pe is the Péclet number of the grain.* The cor-

*Pe = v+ R/2D where v is the dendrite tip velocity, R is the radius
of the grain, and D is the solute diffusion coefficient in the liquid.

rection factor, f(Pe), in Eq. [12] appears when the solute
boundary layer, 8,'is considered. By applying a solute
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flux balance at the grain boundary, R, one can show that
this boundary layer, 8, is given by that of a planar front,
ie.,8=2-Dfv.

Assuming that d/dr (f(Pe)) is small with respect to
dQ/dt, one has:

. dQ P dc*
g‘éz——-f(Pe):iE)__._C_
dr dt o' (1 ~ k) dt

f(Pe)  dT*

== . 13
mecy-(1 — k) drt [13]

where m is the slope of the liquidus line. It appears from
Eq. [13] that the variation in the internal solid fraction,
Af,, in Eq. [11] can be related to the variation in
temperature.

On the other hand, the position of the dendrite tips
which gives the grain radius, R, is such that:

AR =v-Ar = v(AT) - At [14]

where v is the growth velocity of a free dendrite tip in
an undercooled melt as deduced, for example, from the
model of Lipton er al.**! If one neglects the thermal and
curvature undercoolings, which are very small for metal-
lic alloys, v is a function only of the solute undercooling
of the dendrite tip, i.e., of the difference between the liqui-
dus temperature, Ty,, and the grain temperature, T.

It should be pointed out that, when the diffusion layer
of the grain, 8, starts to interact with the layers of neigh-
boring grains, the concentration at the grain boundary
will be increased, thus slowing down the dendrite tips.
The solute balance made at the scale of the grain can
account for this last stage of grain growth, as shown in
Reference 17. At this stage, a state of nearly complete
solute mixing is reached, and the solute model resumes
to Scheil’s equation.!"®

By coupling Eqgs. [11], [12], [13], and [14], and
grouping the terms, one gets:

Af,=A-(T"¥ =T+ B-wWAT')-At  [15]

The first term represents the contribution made by the
change in internal solid fraction, Af;, which depends in
turn upon the variation of temperature with time (Eq.
[13]). The second term is the contribution made by the
volume increase of the grain as governed by the kinetics
of the dendrite tip. A and B in Eq. [15] are not constants,
but functions of n(t), R(r), T(t), and Pe(r) and must be
calculated at each time-step and each node.

IV. COUPLING (MICROENTHALPY MODEL)

Provided that the heat flow coming out of a small vol-
ume element is given, the enthalpy change of the solidi-
fying alloy is independent of the solidification path.
However, the heat flow itself within a casting is dictated
by the temperature distribution and, thus, varies slightly
with the solidification conditions. In an implicit scheme,
the temperature field and the associated heat flow are
taken at time, 7 + Ar, and therefore are not known ex-
plicitly. Accordingly, the linearization procedure (Eq.
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[6]) in principle should be iterated until the micro/mac-
roscopic coupling has converged to consistent values of
both temperature and enthalpy.* However, for a given

*For a given value of enthalpy change, AH,, the variation. AT,
calculated using the microscopic model of solidification (Section III)
can vary, depending upon the solidification conditions, from the value
associated with simple cooling: Af,;, = 0 and A7, = AH,/c, to that
characterizing an isenthalpic reaction: AH, = 0 and AT, = Af,-L/c,.

computing time, more accurate results can be obtained
if only one iteration is made and the time-step is reduced
accordingly.

Figure 3 shows a flow chart of the micro/macroscopic
enthalpy-based coupling which was used. For the sake
of simplicity, the preprocessing modules (enmeshment,

Macroscopic
Microscopic

—-I Loops on the nodes]

Grain-growth.
oceurs

Nucleation -~ growth calculation

Af, = A (T =T') + Bov(r)- 61

T:-tdl

AH.6t + L.B-v(1).01
¢p-L-A

T+

1
All nodes
are calculated

Yes

End of
No solidification

Fig. 3—Flow chart of the micro/macroscopic enthalpy-based model
of equiaxed solidification; at the macroscopic level, the variation in
enthalpy at each node of the mesh is calculated using the enthalpy as
the variable in a FEM formulation. This variation in enthalpy is then
converted into specific heat and latent heat contributions using the
microscopic model of equiaxed solidification.
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input of physical data, of boundary conditions, and of
initial conditions) as well as the post-processing ones
(graphics presentation of results) are not displayed on
this flow chart. It is first assumed that the integer, N,
which divides the time-step, A, is equal to one. There-
fore, the variation in enthalpy at each node, AH;, cal-
culated from the implicit FEM scheme (Section II) is
converted, in a single operation, into a temperature
change, AT}, and a solid fraction variation, Af,, using a
microscopic model of solidification described in Section
I1I. Although the implicit scheme is not subject to a sta-
bility criterion, the time-step in this case has to be kept
small enough so as to go through the recalescence stage
in many steps. In other words, the choice of time-step
is imposed primarily by the physical phenomena and not
by the mathematics of the numerical method. For high
cooling rates, i.e., for meshes close to a chill, the time
increment required to describe recalescence carefully (100
steps, for instance) may be much smaller than the ex-
plicit time-step. This makes the implicit scheme no
longer favorable, at least when calculating micro-
structure formation.

However, as shown in the flow chart (Figure 3), the
macroscopic calculation of the enthalpy variations, {AH},
is separated from the microscopic routines which predict
{AT} and {Af;}. Assuming that the enthalpy change rate,
dH,/dt, is constant during one time-step, A7 = At cror
and is given by AH,/At, the nucleation and growth can
be calculated using 2 much finer time-step, 6t = At/N
= Blpicro, While retaining a fairly large time-step for the
macroscopic calculation of heat flow. Thus, the solidi-

fication path is split into N microscopic time-steps, &, .

according to Eq. [9], where AH; is replaced by 6H, =
AH,/N. This corresponds to adding a loop to the flow
chart (N > 1 in Figure 3). ,

Figure 4 summarizes this two time-steps procedure.
The method permits the calculation of nucleation and
growth using very fine time-steps, so as to carefully de-
scribe recalescence, while keeping a large time-step for
the macroscopic calculation of heat flow. Since fine time-
steps are needed only for those meshes which are in the
nucleation or the growth stages, computing times are re-
duced greatly in comparison with micro/macroscopic
calculations using a single time-step procedure.

On the other hand, another phenomenon, which the
present authors have called the bouncing effect, can be
eliminated by means of the two time-steps procedure.
Bouncing of cooling curves on one another often is ob-
served in heat flow calculations when cooling curves ex-
hibit sudden changes in the first derivative (e.g., at the
eutectic plateau or when recalescence occurs). This nu-
merical phenomenon can be explained as follows. When
one mesh, j, recalesces, it still is characterized by a neg-
ative variation of the enthalpy, AH,, although its tem-
perature, T;, is increasing. This sudden temperature
increase can reverse the local thermal gradient and
cause reheating of neighboring meshes (AT, > 0 with
AH; > 0). This reheating is similar to the wiggles ob-
served when calculating the solidification of a eutectic
alloy.™ In the latter case, the cooling rates of nodes
close to solidifying meshes are slowed down, thus in-
ducing false eutectic plateaus in the cooling curves. Both
reheating or false eutectic plateaus have no real signif-
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Fig. 4—Illustration of the two time-steps procedure. During the time-
step, At, dH,/d: is kept constant and equal to AH;/Ar.

icance as they would not appear in a continuous model,
i.e., when the mesh size and the time-step used in FEM
calculations tend to zero.

Unlike the wiggles appearing in standard calculations
of eutectic solidification, reheating of neighboring meshes
not only disturbs the presentation of cooling curves but
also modifies the calculation of nucleation and growth
close to the liquidus temperature. As will be shown be-
low, a micro/macroscopic scheme based upon two
time-steps (Figures 3 and 4) permits one to avoid this
reheating phenomenon and thus ensure good conver-
gence of the results.

V. RESULTS

The micro/macroscopic enthalpy-based model was
applied to Al-7 pct Si alloy solidifying with an equiaxed
dendritic morphology. Calculations were performed for
1-D and axisymmetric geometries using the program
3-MOS.
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" A. One-Dimensional Castings

The results of a one-dimensional calculation, using the
parameters listed in Table 1, is presented first in Fig-
ure 5. The cooling curves correspond to the locations
indicated in the upper part of the figure. These cooling
curves show that, near the recalescence stage, each vol-
ume element is independent, more or less, of the neigh-
boring ones, and no bouncing or reheating effect is
observed. As shown hereafter, convergence of the method
is nearly assured by this coupling.

In order to test the convergence of the micro/mac-
roscopic enthalpy-based coupling, the cooling curves of
Figure 5 were calculated using seven different mesh
sizes (0.6, 0.8, 1.2, 2, 3, 6, and 12 mm) and five differ-
ent time steps, Ar (0.1, 0.5, 1,-2, and 4 seconds). The
maximum undercooling of the cooling curves near to
recalescence, AT, is plotted vs the number of
meshes (or mesh size) (Figure 6(a)) and vs Ar (Fig-
ure 6(b)) for the same locations corresponding to the
nodes labeled 2, 4, 6, 8, and 10 in Figure 5. The tri-
angles correspond to the values of Figure 5. It can be
seen in Figure 6(a) that the convergence with mesh size
is excellent, except for too large mesh (shaded area).
Such good convergence was not obtained using a single
time-step method because of bouncing effects. As far as
the influence of the time-step is concerned (Figure 6(b)),
convergence is obtained only within a given range of At
values. When too small time-steps are used, bouncing of
cooling curves occurs (shaded area 1), and no conver-
gence is obtained. For Ar values between 0.5 and
2.5 seconds, convergence is good; the undercooling
increases slightly with At because the absence of itera-
tion at the macroscopic level leads to an overestimation
of the heat flow when the slope, (47/ dH);, at a given
node, j, suddenly decreases at recalescence (i.e., nu-
merical diffusion is introduced). When At becomes too
large with respect to the recalescence time, numerical
diffusion becomes too important, and the results diverge
(shaded area 2). Finally, convergence with the time step,
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Fig. 5—Cooling curves for a 1-D casting of Al-7 pct Si Ty =
618 °C). The curves correspond to the locations indicated at the top
of the figure. The difference between T, and the minimum of the
cooling curve near the recalescence is defined as the maximum
undercooling, AT ,,.

ot, used in the microscopic calculations is not a problem
as long as it is kept sufficiently small with respect to the
microscopic phenomena (typically 0.005 to 0.01 seconds
“in all of the calculations on Al-7 pct Si). '
Figures 7 and 8 compare the results of numerical sim-
ulation with measurements made on one-dimensional
castings. Al-7 pct Si alloy, inoculated with 50 ppm of
Ti, was poured into a cylindrical ceramic mold with a
water-cooled copper chill plate at the bottom. The al-
most one-dimensional heat flow obtained using this ge-
ometry was deduced from the temperatures recorded by

Table I. List of Parameters
Alloy Characteristics (Al-Si):
<o = 7 [pct] alloy concentration (wt pct)
m = -6 (K pet™'] liquidus slope
k = 0.13 [—1 partition coefficient
D = 3-107° [m’s™!] liquid diffusion coefficient
a; = 2.904-107° fm-s™'- K™% kinetic coefficient (Eq. [17])
a, = 1.488-107° [m-s™!-K™3 kinetic coefficient (Eq. [17])
L = 9.5-10° [J-m™ volumic latent heat of fusion
G = 2.6-10° [J:m™>-K™) average volumic specific heat
K = 90 (W-m™-K™] average thermal conductivity
M = 8.8-107° [m-s~'7] coarsening factor (Eq. [18])
Inoculation (Ti): 50 [ppm] Ti-base inoculant
Calculation Parameters: Figure 5 Figures 7 through 8 Figures 9 through 12

Number of meshes [~] 100 60 1139

Ar [sec] 1 1 1 -

&t [sec] 0.01 0.01 0.005

ATy K] 6 4 6

AT, [K] 1 1 1

Plomax Im™] 10° 10" 10"

Initial temperature [°C} 720 720 650
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Maximum equiaxed undercooling

A . B
T =
3 . 3 A 1 !
0 50 100 150 200
Number of meshes
(a)

Maximum equiaxed undercooling

2
Atmucro [S]

Macroscopic time-step
(2]

Fig. 6—Convergence of the micro/macroscopic model. Maximum
undercooling, AT,,,, of the equiaxed microstructure vs (a) number of
meshes; (b) macroscopic time-step, Ar. Triangles are for the values
corresponding to Fig. 5.

thermocouples placed within the chill.”” Five thermo-
couples within the casting itself, positioned at 20, 40,
60, 80, and 100 mm from the chill plate, permitted the
recording of cooling curves during solidification. The
initial temperatures of the melt and ceramic mold were
720 and 150 °C, respectively. After solidification, the
cylindrical ingot was cut longitudinally, and metallo-
graphic sections of the five regions near the thermocou-
ples were prepared by polishing and etching with Barker’s
solution. The average grain radius, R, was then deduced
from the quantitative measurement of the surface density
of the grains, N,, and of the mean linear intercept, N,,
using the relationship normally valid for a random ar-
rangement of spheres:?

2N,
R= [16]
7N,
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Fig. 7—Measured and calculated cooling curves for a 1-D casting of
Al-7 pet Si inoculated with 50 ppm of Ti (T}, = 618 °C). The mea-
sured curves correspond to thermocouples located at 20, 40, 60, 80,
and 100 mm from a water-cooled copper chill plate. The parameters
used in the calculation are listed in Table I.

The cooling curves recorded by the five thermocouples
are shown in Figure 7, and the corresponding grain radii
are plotted vs the distance from the chill plate in Fig-
ure 8. The calculated cooling curves and grain radii, which
are shown in the same figures, were obtained using the
parameters listed in Table I. It should be pointed out that
the kinetics of the dendrite tip (Eq. [14]) was that given
by the model of Lipton et al.,” neglecting thermal and
curvature undercoolings. No adjustable parameter was
introduced at this stage. In order to speed up the cal-
culations, the kinetic law obtained using this model was
described by a polynomial law, which fits Lipton’s model:

WAT) = a,+AT? + a,+ AT? [17]

where AT is the undercooling, and a, and a; are given
in Table I.* The only free parameters which have to be
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2
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@
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< B meagsured
O coiculated
0 . . . .

0 20 L0 60 80 100 120
Distance from the chill {mm]

Fig. 8—Calculated and measured grain radii for the Al-7 pct Si
1-D casting whose cooling curves are shown in Fig. 7.
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*Note that a quadratic kinetic law is obtained using a simpler anal-
ysis of dendrite tip growth""*’ and that this law has been used in recent
papers on the modeling of the growth of equiaxed dendritic grains, "
However, substantial differences (a factor 3 to 8) occur between this
quadratic kinetic Jaw and the result of the full analysis of Lipton ez al.
(Eq. [17]). The slowing factor introduced in the kinetic law of pre-
vious papers"'®'” no longer is used in the present calculations.

defined are those associated with the nucleation law
(Figure 2). The three parameters of the gaussian shape
characterizing the nucleation site distribution were de-
duced using the procedure described in Section III-B.
These values are listed in Table I.

As can be seen, it is possible, using only three param-
eters, to obtain a good agreement between calculated and
measured grain sizes (Figure 8), especially if one con-
siders the difficulty of defining and measuring the av-
erage radius of equiaxed dendritic grains in a micrograph.
(It should be pointed out that grain sizes were measured
independently at the Max Planck Institute, Stuttgart.) The
larger discrepancy observed for the point farthest from
the chill (100 mm) may be due to convection effects, as
these are not taken into account in the model and will
become more marked at low thermal gradients.

As far as agreement between the cooling curves is
concerned (Figure 7), the depth and width of the reca-
lescences calculated for curves 4 and 5 (thermocouples
at 80 and 100 mm from the chill) are close to the mea-
sured ones. For the other three curves, no recalescence
is measured, while the model, indeed, predicts that re-
calescence occurs at those points. This may be due to
various causes; the thermocouple response time may be
too large with respect to the recalescence period of these
curves. As fine platinum wires (0.2 mm diameter) with
a thin ceramic coating were used, this effect is certainly
of minor importance. More important is the volume sensed
by the thermocouples. In a thermal gradient, the mea-
sured temperature is a convolution of various regions
which may recalesce at different times. But, most im-
portantly, the assumption of a uniform temperature of
the mesh at the microscopic level is no longer valid. When
the temperature difference across the dendritic grain (i.e.,
a value equal to the grain size multiplied by the thermal
gradient) is larger than the depth of the recalescence cal-
culated using the model, the recalescence is smeared out.

B. Axisymmetric Castings

Figures 9 through 12 present the simulation results ob-
tained for an axisymmetric casting. The Al-7 pct Si alloy
was cast into a sand mold, and the initial temperatures
of the metal and of the mold were 720 and 20 °C, re-
spectively. The heat transfer coefficient between the metal
and the mold was taken into account via the heat-link
procedure described in Section 1I (h = 1000 W/m’K in
this particular case). The calculation was performed us-
ing the enmeshment shown in Figure 1 (1139 nodes).
The time-steps were 1 and 0.005 seconds for the mac-
roscopic and the microscopic calculations, respectively.
The growth law of the dendrite tips is still given by Eq.
[17]. and the parameters of the gaussian nucleation dis-
tribution are listed in Table 1. Figure 9 shows the tem-
perature field S0 seconds after pouring. Cooling curves,
corresponding to the four locations labeled on Figure 1,
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Fig. 9—Calculated temperature distribution within the casting (50 s
after pouring) shown in Fig. 1 (Al-7 pct Si alloy). The temperature
difference between the isotherms is 5 °C.

are plotted in Figure 10. As can be seen, each of these
cooling curves exhibits a recalescence, calculated using
the micro/macroscopic model. The maximum under-
cooling, AT,.,, measured on these curves is the tem-
perature difference between the liquidus temperature
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Fig. 10—Cooling curves calculated, using the micro/macroscopic
model, at the mesh points shown in Fig. 1. Each of these curves ex-
hibits a recalescence with a depth, AT,,,, measured from the equilib-
rium liquidus temperature.
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(T, = 618 °C for Al-7 pct Si) and the local minimum in
the cooling curve near to recalescence. * Figure 11 shows

*Note that AT,,, is not the difference between the local minimum
and the Jocal maximum of the cooling curve, which is often consid-
ered in industry to be the maximum equiaxed undercooling.

a map of this maximum undercooling, AT .., in the cast-
ing. In this case, AT, varies from 2 °C at the center to
4 °C at the surface of the testpiece. As expected from
experiments, the undercooling is lower in the center of
the casting (i.e., where the cooling rate is the lowest)
than at the surface.

As shown in the nucleation model (Section III-B), the
grain density is related directly to the maximum under-
cooling, AT,.,, via the nucleation distribution, and the
calculated grain radii also are listed in Figure 11. In the
center of the testpiece (point 4, Figure 1), the grain ra-
dius is slightly larger than 4 mm, whereas, for higher
cooling rates near the surface, the radius is of the order
of 0.5 mm.

The program, 3-MOS, can also predict other micro-
structural parameters. Figure 12 presents a map of the
secondary arm spacing, A,, for the same testpiece. Al-
though the program can predict the dendrite tip radius
and the associated initial dendrite arm spacing, coars-
ening smoothes out any variation in the initial dendrite

Fig. 11—Map of calculated maximum undercooling. AT,,,. within
the casting shown in Fig. 1. As AT, can be related directly to the
average grain size using the nucleation law (Fig. 2 and parameters
listed in Table I), this figure also maps the average grain size, R,
within the casting.
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arm spacing. Therefore, the values of A, shown in Figure
12 were deduced from the standard coarsening model of
Feurer and Wunderlin:'?”

Ay =M1 [18]

where the coarsening rate constant, M, is given in Ta-
ble 1, and 1, is the local solidification time.

In order to test the validity of the model, various cases
were calculated, with several initial and boundary con-
ditions and different nucleation parameters. The ob-
served behavior of the calculated cases always
corresponded to that expected on the basis of experi-
mental work. For example, the map of maximum un-
dercooling (or grain radius) has been calculated for the
same testpiece as that shown in Figure 1 but with dif-
ferent nucleation parameters. Decreasing the density of
inoculant sites by a factor of 100, while keeping other
parameters constant, increases the maximum undercool-
ing (i.e., the recalescences are deeper), together with the
average grain radii. This behavior would correspond, for
instance, to a noninoculated melt.

The same micro/macroscopic coupling was also ap-
plied to irregular eutectic alloys such as gray cast iron
solidifying with an equiaxed morphology, by simply set-
ting the internal solid fraction, f;, in Eq. {10] equal to i
and by taking account of the kinetics of the eutectic front.
Since the diffusion layer around the grain envelope is
much smaller than the grain radius in this case, grain

Fig. 12—Map of calculated secondary arm spacing, A.. within the
casting shown in Fig. 1.
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interaction was allowed for by considex:ing the impinge-
ment of densely packed solid spheres.!

VI. CONCLUSION

A new and general approach to the modeling of
equiaxed dendritic and eutectic microstructure formation
in castings is proposed. At the macroscopic level, the
heat diffusion equation is solved using an enthalpy for-
mulation and a FEM implicit scheme. At the micro-
scopic level, the nucleation and growth of equiaxed
crystals is calculated at each node and time-step, know-
ing the variation in enthalpy deduced from the macro-
scopic calculation. In addition to the temperature field,
solid fraction distribution, and parameters deduced from
the isotherms evolution, the micro/macroscopic calcu-
lation provides interesting results concerning equiaxed
microstructures, such as undercooling, grain size, frac-
tion of eutectic, and microstructural spacings.

The results presented are for one-dimensional and axi-
symmetric geometries. Quantitative agreement between
the measured and calculated recalescences and grain size
has been demonstrated for one-dimensional castings of
Al-7 pet Si. The behavior of the calculated cases for more
complex geometries is in good qualitative agreement with
that found in experiments.

The main advantage of the micro/macroscopic
enthalpy-based model is the two time-steps procedure.
First, this coupling permits us to avoid bouncing effects
and reheating of meshes which leads to a good conver-
gence of the results. Second, it dramatically reduces the
computing time, thus permitting the application of the
model to two- or even three-dimensional geometries.

As far as computing time is concerned, three different
methods of calculation can be compared: (a) a standard
macroscopic calculation of heat flow using the enthalpy
formulation, At = 1 second; (b) a micro/macroscopic
calculation using a single time-step procedure, At = &t
= 0.01 second; and (c) a micro/macroscopic calculation
with two time-steps, Az = 1 second and ér = 0.01 sec-
ond. The time-step, Ar, of method (b) must be taken
equal to 61, so as to describe recalescence with the same
accuracy as that in scheme (c). (Method (b) will give
rise to bouncing effects in most cases.) The CPU times
for methods (a), (b), and (c¢) for the calculation of the
axisymmetric test-piece shown in Figure 1 are listed in
Table 1. It can be seen that the two time-steps procedure
(method (c)) increases only slightly the overall comput-
ing time with respect to the standard macroscopic cal-
culation (method (a)), whereas the difference between
methods (a) and (b) is very large. This can be understood
easily since the macroscopic calculation of heat flow has
to be done at each time step. &, in this case.

The main problem in the practical use of the model is
the correct choice of the two time-steps. As the mac-
roscopic calculation is done implicitly, no Fourier cri-
terion has to be satisfied. Thus, the two time-steps can
be chosen freely within the limits shown in Figure 6(b).
The macroscopic time-step has to be sufficiently large
with respect to the recalescence time to avoid reheating
of the meshes (bouncing effects) and be small enough to
reduce the error associated with the linearization scheme
of the heat flow equation (numerical diffusion). The choice

METALLURGICAL TRANSACTIONS A

Table II. Computing Time for One Second of
Solidification on Apollo DN3000 (1139 Nodes)

Method (a)

Pure macroscopic calculation

(1 step = 1 second)
Method (b)

Micro/macroscopic calculation
with a single time-step (100 time-
steps = 1 second)

Method (c)

Micro/macroscopic calculation
with two time-steps (1 step macro
= | second and 1 step micro
= (.01 second)

(maximum CPU-time for one
macroscopic time-step)

(average CPU-time per macro-
scopic time-step)

180 [seconds]

20,000 [seconds)

250 {seconds]

200 [seconds]

of the time-step used in the microscopic calculation is
easier; the maximum limit is dictated by the width of the
recalescence, and there is no minimum limit. Further in-
vestigations will be made in this field in order to predict
the best time-steps and mesh sizes as a function of each
problem and to implement an automatic dynamic time-
stepping procedure.
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