A Three-Dimensional Cellular Automaton—-Finite Element
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A three-dimensional (3-D) model for the prediction of dendritic grain structures formed during
solidification is presented. Thismodel isbuilt on the basis of a3-D cellular automaton (CA) algorithm.
The simulation domain is subdivided into aregular lattice of cubic cells. Using physically based rules
for the smulation of nucleation and growth phenomena, a state index associated with each cell is
switched from zero (liquid state) to a positive value (mushy and solid state) as solidification proceeds.
Because these physical phenomena are related to the temperature field, the cell grid is superimposed
to a coarser finite element (FE) mesh used for the solution of the heat flow equation. Two coupling
modes between the microscopic CA and macroscopic FE calculations have been designed. In a so-
called “weak” coupling mode, the temperature of each cell is simply interpolated from the temperature
of the FE nodes using a unique solidification path at the macroscopic scale. In a “full” coupling
mode, the enthalpy field is also interpolated from the FE nodes to the CA cells and a fraction of
solid increment is computed for each mushy cell using a truncated Scheil microsegregation model.
These fractions of solid increments are then fed back to the FE nodes in order to update the new
temperature field, thus accounting for a more realistic release of the latent heat (i.e., the solidification
path is no longer unique). Special dynamic alocation techniques have been designed in order to
minimize the computation costs and memory size associated with a very large number of cells
(typically 107 to 10%). The potentiality of the CAFE model is demonstrated through the predictions
of typical grain structures formed during the investment casting and continuous casting processes.

[. INTRODUCTION

A two-dimensional (2-D) cellular automaton (CA)—finite
element (FE) model has been proposed by Gandin and Rap-
paz for the modeling of dendritic grain structures formation
during solidification.™ This 2-D CAFE model was validated
on the basis of numerical tests performed on simple heat
flow configurations, e.g., Bridgman-type cooling conditions
(fixed thermal gradient and cooling rate). These tests were
complemented by the comparison of the predicted envel opes
of single dendritic grains with those calculated from analyti-
cal solutions.[Z Experimental validations were also carried
out using in situ observations of the Bridgman solidification
of transparent analogues. The 2-D CA algorithm was shown
to reproduce well the growth competition occurring among
columnar grains.! Good agreement was also obtained for
the extension of a single dendritic grain into alateral region
of liquid past are-entrant corner.[? The predicted columnar-
to-eguiaxed transition using the 2-D CAFE model wasfinaly
compared with the grain structure of an aluminum - 7 wt
pct silicon aloy, which was unidirectionally solidified. As
aresult of these various validations, it was concluded that
(2) the2-D CA growth algorithmisindeed ableto account for
the physical mechanisms involved during dendritic growth
(e.g., influence of the dendrite growth direction on the tip
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undercooling, grain competition at grain boundary, etc.); and
(2) the 2-D CAFE model can predict satisfactorily the grain
structures formed in various solidification processes such as
the investment casting of turbine blades, the continuous
casting of rods, and welding.[®!

Despite the new insight brought by the 2-D CAFE model
into the modeling of solidification grain structures, a three-
dimensional (3-D) model had yet to be developed in order
to predict quantitatively real as-cast structures. Indeed, the
2-D model could reproduce neither the intricacy of grain
structures seen in transverse sections of thin “equiaxed”
plates or airfoils nor the evolution of the crystallographic
texture associated with the selection mechanisms of colum-
nar grains. This problem was partially overcome by consider-
ing apreliminary 3-D extension of the CA model, yet limited
to uniform temperature situations and simple geometry.[458
But a general extension of the CAFE model to 3-D heat
flow situationsin real casting geometry had still to be made.

A magjor step in this direction was achieved recently by
Gandin and Rappaz, who proposed a 3-D CA growth algo-
rithm of dendritic grains valid for any arbitrary temperature
field.[l As for the 2-D developments, it was shown that the
predictions of the new 3-D CA growth model compared
favorably with an analytical solution developed under the
assumption of Bridgman—type cooling conditions. In their
conclusion, Gandin and Rappaz wrote: “the 3D CA growth
agorithm, coupled with Finite Element heat flow calcula
tions, will becomeamajor tool for the prediction of dendritic
grain structures in solidification processes.” However, the
coupling of a 3-D CA nucleation-growth model with a FE
heat flow model is not straightforward due to the very large
number of cellsinvolved in a casting. Indeed, it was shown
in 2-D that the typical cell size that is required to reproduce
well the branching mechanisms of dendrite arms (and thus
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grain competition) is of the order of 50 to 100 um. For a
3-D casting of only (10 X 10 X 10) cm?, this means that
1 to 8 hillions cubic cells would have to be defined with
typically 100 bytes of information per cell. In order to over-
come such difficulties, specific numerical techniques had to
be implemented in a 3-D CAFE model. The goa of this
article is to present the specia coupling that has been
achieved between the 3-D CA model and FE heat flow
simulation and to demonstrate its feasibility for the invest-
ment casting and continuous casting processes.

1. A 3-D CA MODEL

As for 2-D geometry, the 3-D CA model first requires
subdivision of the simulation domain, in which solidification
takes place into aregular lattice of cubic cells. A stateindex,
l,, is attributed to each cell, ». At the beginning of the
calculation, the metal is liquid and all the cells have a zero
stateindex. By defining appropriate rulesto changethevalue
of the state index of the cells, a phase transformation can
be simulated.®! As in the Monte Carlo method,®**? these
rulescan be based on probabilities, which might beafunction
of the temperature and state of the nearest neighbors (NNs),
or they can be deterministic as in the CA method. In any
case, they should reflect the physical phenomena involved
in the solidification of dendritic alloys and summarized in
classical textbooks.'® The only stochastic aspects built in
the present CA model, which can be verified experimen-
tally,’® are related to nucleation because both the position
and crystallographic orientation of anew nucleus are usually
dependent on hidden variables (except, for example, in
Bridgman directional solidification with a seed crystal or
more generaly in epitaxia growth). The nucleation and
growth agorithms used in the 3-D CA, which are largely
based on the 2-D model,[Y are briefly presented hereafter.

A. Nucleation Algorithm

Asfor the previous 2-D CA model,[¥ the nucleation algo-
rithm built into the 3-D CA model is based on an instanta-
neous nucleation model proposed by Rappaz.'¥ This model
relies on two observations. First, at the small undercoolings
usually encountered in castings, the heterogeneous nucle-
ation theory proposed by Turnbull*3! predictsan abrupt burst
of nucleation as soon as a critical undercooling is reached.
It can be approximated consequently by an instantaneous
activation of the corresponding nucleation sites at this under-
cooling. Second, several families of nucleation sites, al
characterized by different critical undercoolings, usually
coexist in the melt. However, it seems difficult, if not impos-
sible, to make an “inventory” of all these families. Conse-
quently, Rappaz proposed to consider aGaussian distribution
of nucleation sites to model the grain density increase, dn,
which is induced by an increase in the undercooling,
d(AT). The distribution, dn/d(AT), is described by its
mean undercooling, ATy, itsstandard deviation, AT, and its
integral, nna. Thislatter value corresponds to the maximum
grain density, which can be reached if al the nucleation site
families are activated during the cooling process. These
parameters have to be determined experimentaly for a
given aloy.

In an initialization stage, nucleation sites are distributed
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among the cells defining the CA grid. For that purpose, the
number of nucleation sites, N, to be distributed among
the cells of a given volume V is simply given by (NyaV),
these cells being randomly chosen in the volume V. For
each “nucleation cell” » selected in this way, a nucleation
undercooling, AT = T, — T™ where T, isthe liquidus
temperature and T is the critical nucleation temperature,
is also randomly attributed according to the prescribed
Gaussian distribution, dn/d(AT). Unlike the 2-D CAFE
model for which all the cells are defined at the beginning
of the calculation (i.e., V in this case is the entire volume
of the casting), the 3-D CAFE agorithm uses a dynamic
alocation of the cells (Section 1V). Therefore, initialization
of nucleation cells is repeated every time new liquid cells
(and thus liquid volume) are dynamically allocated during
the CA calculation.

If no nucleation site is located in a cell, no nucleation
event can take place in it regardless of its temperature. On
the contrary, if the temperature of a nucleation cell », T,,
becomes lower than the critical temperature of its “associ-
ated” nuclestion site, T™, the value of the state index of
the cdll, 1,, is changed to a nonzero integer value identical
to the grain counter index. A crystallographic orientation is
then randomly chosen among predefined orientation classes.
These orientation classes are initialized at the beginning of
the calculation by a random selection of the three Euler
angles (refer to the definition in Reference 16) producing a
uniform distribution of the (100) directions on a unit sphere.

It should be mentioned that during the random selection
of N{M cells, some cells may be selected twice or more. In
such a case, only the smaller nucleation undercooling, i.e.,
the most favorable nucleation site, is kept in agreement with
the instantaneous nucleation law. Nucleation at boundaries
of the casting can also be defined in a similar way by using
asmany Gaussian distributions as necessary, the cellslocated
at a boundary being identified by an additional boundary
index, lge, €qual to the reference of the boundary to which
they belong (Ir¢ = O if the cell isin the bulk of the liquid).
The maximum volume grain density is then replaced by a
maximum surface grain density and the number of nucleation
sitesto be distributed, N2, is calculated by considering the
surface of the domain, S, on which the reference applies.

Other nucleation boundary conditions can be described
in the 3-D CAFE model, as summarized in Table I. “Single
crystal” boundary conditions allow the start of formation of
the“grain structure” (i.e., of only onegrainif no stray crystal
forms) for a specified undercooling and crystallographic
orientation, either on a referenced surface or at a specified
location in the casting. Thisis of practical use when only the
growth of asinglecrystal isto be studied (e.g., propagation of
asingle crystal in the platform of an investment cast turbine
blade). The“(100) fiber texture” boundary condition applies
only for a surface; in this case, the crystallographic orienta-
tion classes of the grains for this surface are generated by
assuming an initial fiber texture (table footnote).

B. Growth Algorithm

Asforthe2-D CAFE model, the 3-D CA growth algorithm
must be able to reproduce the preferential (100) growth
directions of fcc dendrites and their growth kinetics. It is
based on the growth of an octahedron bounded by (111)
faces and is applied to each cell having anonzero state index
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Tablel. Nucleation Conditions Available in the 3-D CAFE
Model and Associated Parameter s*

Type Location Parameters
Gaussian distribution volume (ATn, AT, Nmax)
Units: (K, K, m™9)
Gaussian distribution surface lrets (ATN, ATy, Niax)
Units: —, (K, K, m™?
Single crystal surface lrets (1, &b, P2), AT,
Units: —, (deg, deg,
deg), K
Single crystal point (P, &, &), AT, (X
Y, 9
Units: (deg, deg, deg),
K, (m, m, m)
(100) fiber texture surface Irer, Ngs (Ng, Ny, 1), 6

Units: —, m~2, (m, m,
m), deg

* (AT, AT, Nne) arethethree parameters of aGaussian distribu-
tion of nucleation sites as a function of the undercooling (mean
value, standard deviation, and maximum grain density, respec-
tively).™. I« isacell reference number; (¢, ¢, ¢,) are the three
Euler angles defining the crystallographic orientation of a single
crystal; AT, is the nucleation undercooling of a single crystal; n,
is a surface grain density; and (ny, ny, n,) is the axis of a (100)
fiber texture, i.e., (ny, ny, n,) are the direction cosines in the (X,
Y, Z) reference of adirection around which the [001] trunk direc-
tions of the grains are randomly distributed within a solid angle,
0 (0 = 45 deg). The [100] directions (and consequently the [010]
directions) are randomly selected in the plane perpendicular to (ny,

ny, n,).

and at least one neighboring liquid cell.[? This is shown
schematically in Figure 1: the growing octahedron associated
with acdl v (1, # 0) is “capturing” the cell center of one
of its neighbors u (1, = 0). The state index of the cell w is
then switched to that of the parent cell » (i.e, 1, = 1,), and
the growth of a new octahedron associated with cell u is
later considered. As soon as a cell is fully surrounded by

Fig. 1—Schematics of the decentered octahedron CA growth algorithm.[”)
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mushy cells, the growth of its associated octahedron is no
longer considered.

The main diagonals of the octahedron correspond to the
(100) crystallographic orientations along which dendrite
stems and arms of fcc metals preferentially develop. Their
extension is calculated by integrating over time the growth
law of the dendritetips given by the model of Kurz et al [17-18]
Thus, within thetime-step, ét, used for integrating the growth
kinetics of the dendrite tips, the size increment of the diago-
nas of the octahedron associated with a cell », AR, is
given by

AR, = V(AT,) &t (1]

where v(AT,) is the velocity of the dendrite tips calculated
for the corresponding undercooling, AT,, of cell ». In the
case of an octahedron whose diagonals are perfectly aligned
with the (X, Y, Z) axes of the CA grid, the CA growth
algorithm can be simply applied to the center of the cells.
In a uniform temperature field, this integration leads to a
simple octahedral shape in agreement with the experimental
observations of Ovsienko et al.*¥ But the main problem
associated with the design of a CA growth algorithm capable
of keeping the preferential growth directions of the dendrites
is highlighted when trying to propagate a grain with a ran-
domly chosen crystallographic orientation with respect to
the axes of the CA grid. The strong anisotropy introduced
by the cubic cell |attice leads to agrain shape always aligned
with the CA grid, the growth kinetics being no longer prop-
erly integrated over time. In order to correct the anisotropy
introduced by the cubic cell lattice, Gandin and Rappaz
have proposed the use of a decentered octahedron growth
agorithm.[l This is schematically shown in Figure 1: the
centers, C, and C,,, of the growth octahedra associated with
cells v and w do not coincide with their centers. Details of
this algorithm can be found in Reference 7. It should be
also noted that the growth kinetics, v(AT, ), of the six dendrite
tips of a given octahedron are the same; they are evaluated
using the temperature T, (or the undercooling AT,) of the
center of cell ». This approximation, however, is reasonable
as shown by the validations reported in Reference 7. Findly,
the growth algorithm is applied with an environment given
by the 6 first-, 12 second-, and 8 third-NN cells (26 neigh-
bor cells).

C. Micro Time-Sep Calculation

In order to correctly integrate the growth kinetics and
propagate the crystallographic orientation of the grain, the
extension of the octahedron associated with a cell » during
onetime-step must berestricted to the NN. If &t isthe micro-
time-step used for the integration of the growth kinetics, the
criterion introduced by the CA growth agorithm can be
written as

St = St [2]
where
Otmax = |ceII/V(ATmax) [3]

The maximum value of thetime-step used for theintegration
of the growth kinetics, &t is thus given by the ratio of
the cell size, |, and the highest dendrite tip velocity,
V(AT na), taken at the maximum undercooling, AT ., Of all
the growth cells found in the simulation domain.
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Thiscriterion isvalid when considering individual grains.
However, two adjacent growth cells, », and »,, belonging
to two different grains (i.e., cells located on both sides of a
grain boundary), may both be able to capture a common
liquid neighboring cell, wx, during the same time-step.
Because al the growth cells are successively scanned within
one micro-time-step, the first scanned cell would then cap-
ture cell w, regardless of the crystallographic orientations
of thegrains. In order to overcomethis problem and correctly
predict the growth competition of columnar grains, aparame-
ter, a, has been introduced in the selection of the micro-
time-step, 6t, used for the integration of the dendrite tips
kinetics. One then has

Ot = adtn with a € ]0, 1] [4]

[11. COUPLING CALCULATION MODES

As for the 2-D CAFE model,[¥ the heat exchanges are
calculated at the level of a coarse FE mesh, whereas nucle-
ation and growth are simulated at the fine CA grid level.
Various coupling schemes have been implemented in the
3-D CAFE model.

A. Weak Coupling Calculation Mode: Temperature
Interpolations

As shown previoudly, the nucleation and growth algo-
rithms are defined as a function of the local temperature of
the cells. Consequently, afirst coupling between the CA and
FE methods can be defined as a simple interpolation of the
temperature of acell v, T,, from those calculated at the FE
nodes n, T,. Because the macro-time-step, At, used by the
FE method does not necessarily fulfillsthe CA growth crite-
rion (Eq. [2]), a micro-time-step, ét, is defined according to
Egs. [3] and [4]. The temperatures, T'm, of a cell v inside
an element E, of the FE mesh at agiventimet, e [t, t +
At] are thus deduced from linear interpolations on both time
and space variables; i.e.,

T = EE $n(X,) Tim (54l
nek,
t+ At —t th— t
Tip = Th 0+ T
[Sb]

with t, € [t, t + Af]

where the summation is performed on all the nodes belong-
ing to the element E, and ¢,(x,) are the shape functions
estimated at the cell center position, x,. Similarly to the
microenthalpy scheme defined in Reference 20, a loop on
the micro-time-steps is therefore implemented and the CA
nucleation and growth steps are repeated until t,, = t + X6t
=t + At. The flow chart shown in Figure 2(a) summarizes
the weak coupling scheme of the CAFE model.

The grain structure calculation can be performed inter-
actively by calling the CA model within each macro-time-
step of the FE method. But the main advantage of the weak
coupling calculation mode is that the CA calculations can
also be performed a posteriori once the FE calculation is
completed, provided the FE mesh and temperature history
have been stored on data files. This postprocessing method
can be easily implemented into any finite element or finite
difference codes.
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B. Full Coupling Calculation Mode: Microenthal py
Scheme

In the weak coupling mode, the temperatures are calculated
a the macro level using the FE mesh and a unique solidifica-
tion path, i.e., unique relationship between temperature and
volume fraction of solid, fs, or enthapy, H. A more accurate
coupling of the CA and FE methods consists of recalculating
thetemperature and fraction of solid of the FE nodes after each
micro-time-step using.the so-called “ microenthalpy scheme,”
first introduced by Thevoz et al.[**?% and already adapted for
the 2-D CAFE model .l Compared to a standard enthalpy
method, such a scheme accounts for the delay in forming the
solid due to the undercooling necessary for the formation of
the dendritic structure. It thus leads to a better description of
the latent heat release in the solidification interval, especially
in aweak thermal gradient.

The FE code is based on an implicit enthalpy method to
solve the heat flow equation during a macro-time-step. The
procedure is as follows.

(1) Theenthalpy variationsat the FE nodelocations, { AH,},
during one time-step are calculated using alinearization
method!?® and the known temperatures at timet, { TL}.

(2) The macro-time-step, At, is split into micro-time-steps,
ot, and the variations of enthalpy at each node n of the
FE mesh during one micro-time-step are linearized:

6H, = — AH, [6]

i.e,, the heat extraction rate is assumed to remain con-
stant for each node during the macro-time-step, At.

(3) For FE nodeswhose temperatures are above the liquidus
temperature or below the solidus temperature, the new
temperatures, { T4, are simply deduced from the new
enthalpies, {H At = HY, + AH,}, using the T(H) rela
tionship used by the FE method.

(4) For FE nodes located in the solidification interval, the
following energy balance applies during one micro-
time-step:

oH, = Pcp‘STn - Lafsn [7]

where pc, and L are the volumetric heat capacity and
latent heat of fusion, respectively. From Egs. [6] and
[7], it appears that the temperature variations at the FE
node locations, 6T,, can be calculated if the variations
of fraction of solid, &fs ,, are known. Unlike the scheme
introduced by Thevoz et al.,[?? these later variations are
calculated by summing the corresponding entities, 6fs,,,
deduced for the cells (refer to subsequent explanations):

2 d’n(x V) 5fs,1/

yn = g———
’ E ¢n(xu)

(8]

The values of the new temperatures at each microtime,
{Tt® = Ttm + 6T}, can thus be estimated using Eq.
[7].

(5) At the end of the macro-time-step, At, the new
temperatures, {T5%, and volume fractions of solid,
{ f51A% | at the FE node locations are known. The proce-
dure is then restarted at point (1) for the following
macro-time-step At.
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Fig. 2—Flow charts of the (a) weak and (b) full coupling calculation modes of the 3-D CAFE model.
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The variation of the volume fraction of solid of a cell »,
6fs,,» during one micro-time-step is computed following the
coupling scheme proposed by Gandin and Rappaz.!¥ Three
different situations are considered.

1. No variation of the fraction of solid

This situation is encountered for a cell completely solidi-
fied at the beginning of the micro-time-step (i.e., with a
temperature below the solidus temperature) or remaining
liquid during the micro-time-step. In both cases, one has
6fs, = 0.

2. Cell becoming mushy
Either due to nucleation or to the growth of an already
mushy neighbor, the state index of a liquid cell changes to
a nonzero value during the micro-time-step. The fraction of
solid increment is then initialized using the Scheil microse-
gregation model*® at the actual temperature of the cell,
Ttm:
T — T, U(k—1)
ofs, =1 (TL — Tm) [9]
where T, is the liquidus of the aloy, T, is the melting
point of the solvent, and k is the partition coefficient. This
truncation of the Scheil relationship, which is identical to
the assumption made in the model developed by Flood and
Hunt,3 does not strictly conserve solute.[?? It is neverthe-
less afairly good approximation at the small undercoolings
usually encountered in most solidification processes.

3. Solidification of a mushy cell

A mushy cdll, i.e., a cell with a nonzero state index and
anonzero fraction of solid, issolidified according to Scheil’s
microsegregation model. The derivative form of Scheil’s
equation (Eqg. [9]) combined with a heat balance (Eq. [7])
written for a cell v leads to

—&H,
(T — Tk — D[L — fim] &2 4

The enthalpy variation of cell v, 6H,, is deduced from a
linear interpolation of the enthal py variation of the FE nodes
of the element to which the cell belongs. When the cell
temperature reaches the eutectic temperature, Tg, an isother-
mal transformation isassumed to take place. The cell temper-
ature is maintained at T as long as the fraction of solid is
lower than unity and the increase of the solid fraction of
the cell, ofs,, is calculated according to

Sf, = —oH, /L [11]

Figure 2(b) shows the flow chart of the full coupling
calculation mode. Differences with the flow chart of Figure
2(a) valid for the weak coupling cal culation mode have been
highlighted in bold characters. In a sense, the integration of
the microenthal py schemein the CAFE model can beviewed
as a multigrid/multi-time-step technique.”® From interpo-
lated enthalpy variations, variations of fraction of solid are
calculated at the CA level and summed up at the FE node
locations in order to deduce the new temperatures. It should
be pointed out that the interpolation step with the shape
functions, ¢,, is unique (Eg. [53]), but the restriction from
the CA level to the FE nodes (Eq. [8]) is not.[% The restric-
tion step of the full coupling mode is labeled “B” in Figure
2(b). Also note that by decreasing the parameter « (Eq. [4]),

Sfy, =

[10]
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one can increase the number of micro-time-steps and, thus,
avoid rebouncing problems, as mentioned in Reference 20.

V. DYNAMIC ALLOCATION

In order to predict successfully the competition occurring
among columnar grains, Gandin and Rappaz have shown
that the size of the CA cells should be smaller than the
length at which the branching mechanisms of the dendritic
network take placel¥ As defined by Huang and Glicks-
man,!? this length is a function of the distance between
“active” secondary dendrite arms, i.e., branches extending
into opened regions of liquid and leading to the formation
of new tertiary arms. The tertiary dendrite arms may in
turn transform into primary dendrite trunks in the case of
directional solidification. In a particular case, a cell size |
= 50 um was found to be sufficient for a good prediction
of the competition occurring among three columnar grains
observed by Esaka in a succinonitrile-acetone alloy.>?! In
three dimensions, 10 million cubic cells of 50 um would
only correspond to a 1.25 cm® domain and yet require 1
GByte of RAM,* not counting the memory required for the

* About 100 bytes of information per cell isrequired in the CA algorithm

FE calculation. A 1.25 cm? volume is at least one order of
magnitude too small to model a representative domain of a
casting. Consequently, special dynamic alocation ago-
rithms must be defined in order to model solidification grain
structures in a representative volume of the casting, while
avoiding definition of all the cells simultaneously. These are
explained hereafter.

A. Window, Block, and Cell Subdivisions

In addition to the partitioning of the solidification domain
into an FE mesh and a CA grid, two intermediate subdivi-
sions are introduced: “blocks,” which are sets of cells, and
“windows,” corresponding to sets of blocks (Figure 3).

Windows are orthogonal parallel epipeds whose faces are
perpendicular to the (X, Y, Z) axes of the CA grid. Several
windows, eventually contiguous, may be defined by the user
and automatically numbered from 1 to Ny The calculation
domain for the microstructure isthen defined asthe intersec-
tion between these windows and the FE model of the cast
part. Windows are used to limit the size of the calculation
domain, and thus the number of cells, to zones of interest
(e.g., the grain selector or the region near a platform of a
turbine blade).

Each window is made of blocks. A block isaset of n, =
n, X ny, X n, cells, where ny, n,, and n, are the numbers of
cellsin each block inthe X, Y, and Z directions, respectively.
All the blocks have the same size, eg., n, = n, = 6 in the
case of Figure 3. For typically n, = n, = n, = 10, the total
number of blocks in the cellular automaton, Ng, is three
orders of magnitude lower than the total number of cells.
Blocksareindexed from 1 to Ng, starting in the first window
and following the sequence of the Ny, windows. In each
window, the block index is incremented according to the
CA axes (i.e, X-axisfirst, Y-axis second, and Z-axis third).
The total number of blocks in each window is also kept in
memory. Therefore, given any block index between 1 and
Ng, this absolute indexing scheme allows one to easily find
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Fig. 3—Schematics of the dynamic allocation designed for the 3-D CAFE model in case of the (a) weak and (b) full coupling calculation modes. The
window, block, and cell definitions are made visible in these figures. The state indexes of the nodes, elements, and blocks as a function of their position
with respect to the current temperature field are also illustrated.
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the window to which it belongs and its position in the win-
dow. In each block, the same numbering scheme is applied
for the cells from 1 to n,. Consequently, a cell is identified
in a unique way in the entire cellular automaton grid by its
block number (number in the range [1, Ng]) and its cell
number in the block (number in the range [1, ny]). It isto
be noted that the blocks are subdivided into cells only when
they become mushy, thus limiting drastically in most cases
the memory size necessary for the CA calculations (as dis-
cussed subsequently).

B. Initializations (Finite Element-Block Connectivity
Files)

In order to make interpolations-restrictions between FE
nodes and CA cells (Egs. [5a] and [8]), a certain number of
interconnections must be defined also at the block level,
prior to running asolidification calculation. A block belongs
toaFEif at least one of its cellsisinside the element. (Note
that tests are performed considering the center of the cells
with respect to the volume occupied by the FE). A list of
al the blocks belonging to each element and another one
defining all the elements to which a block belongs are con-
structed. These two connectivity tables are saved on two
separate files called finite element-block connectivity files.

A state flag is attributed to each block. It is set to “dead”
for blocks that do not belong to any element (e.g., block
falling entirely in the mold) and to “inactive” for the others.
The state flag is the only element of information on the
blocks permanently kept in the computer memory. For com-
plex casting shapesthat do not fit well inasingle parallelepi-
ped, the total number of dead blocks can be decreased by
using contiguous windows whose union fits better the shape
of the component (e.g., two parallelepipeds for the bottom
and upper platforms of aturbine blade and athinner parallel-
epiped for the airfoil in between).

C. Activation and Deactivation of Blocks, Nodes and
Elements, Cell References

During solidification, elements and blocks are activated,
and then deactivated, in the CAFE calculation as the mushy
zone moves across the domain. The procedures used to
activate and deactivate elements and blocks, and thus to
allocate and free the memory space associated with the CA
cells, depend on the calculation mode specified by the user.

In the weak coupling calculation mode, elements are set
active as soon as one of their nodes falls below the liquidus
temperature. Because the temperature of the FE nodes is not
modified by the CA module, the temperatures at the end of
the macro-time-step, { T2}, are used for the element and
block activation. This procedure is thus carried out only
once at each macro-time-step (Figure 2(a)). As illustrated
in Figure 3(a), al the blocks that belong to the activated
elements are themselves activated. This is done with the
help of the FE-block connectivity file. All the variables
needed for the CA model are then allocated into the memory.
For instance, for each of the cells » of a block being acti-
vated, theindex of thefinite element, E,, to which it belongs
is calculated and stored. The search procedure for the deter-
mination of E, is restricted to the list of the elements to
which the block belongs, as given by the corresponding
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connectivity file. An arbitrary negative value for E, is
assigned to each cell that does not belong to any element
(i.e., acdl faling in the mold but still belonging to a block
that isnot dead). Similarly, areferenceindex, |Ir«, iSassigned
to acell that does not have al itsfirst NN inside the calcula-
tion domain, i.e., to a cell for which at least one NN cell
has a negative E, value. The vaue |z comes from the
reference index of the corresponding FE boundary or from
a reference index imposed on one face of a user window.
Please note that optimizations are made so as to limit the
total mount of variables. For instance, the coordinates of a
cell, as well as the indexes of its first, second, and third
NN are not stored in memory because they can be easily
recal culated from the absolute indexing system used for the
numbering of blocks and cells.

A block is deactivated when its n, cells have ended their
growth stage. Because the growth of a cell is considered
until its 26 neighbor cells have turned mushy (or are dead),
ablock is deactivated when all its cells, aswell as one layer
of boundary cells belonging to the 26 adjacent blocks, are
mushy. The memory space previously allocated to the cells
of this block is then freed and the block is killed (flag index
“dead” in Figure 3). Finaly, if an active element contains
only deactivated blocks, it is aso deactivated (Figure 3).

In the full coupling calculation mode, the activation crite-
rion of elements and blocks is essentially the same as for
the weak coupling calculation mode. However, because the
temperature variations during the macro-time-step are not
known when entering the CA modul e, activation of el ements,
nodes, and blocks has to be updated at each micro-time-step
using the explicit temperature, { T}, of the nodes (box
labeled “A” in Figure 2(b)). In the 2-D CAFE model
described in Reference 1, the increase of the fraction of solid
of the FE nodes using Egs. [8] through [11] was carried out
until the temperature of the FE nodes fell below the eutectic
temperature. This requires keeping in memory the data asso-
ciated with the cells over the entire solidification interval
of the alloy, T, — Te. A more efficient solution, which
requires less memory, has been devised for the 3-D CAFE
model.

For FE nodes located outside the CA windows, their new
temperature and fraction of solid are directly computed from
the enthalpy variations using a unique T(H) relationship
applied at the macroscale of the FE mesh. For FE nodes
enclosed in the CA domain (i.e., in the calculation windows
defined by the user), two flags have been defined: an “ Acti-
vation” flag (O = Inactive, 1 = Active) and a “Coupling”
flag (0 = Uncoupled, 1 = Coupled). These flags allow three
different states of the FE nodes to be distinguished with
respect to their coupling with the CA cells. Thisisillustrated
in Figure 3(b). The state of a given FE node (e.g., hode 1
in Figure 3(b)) depends on the state of its first- and second-
NN environment. The first-NN environment of an FE node
n is made of al the nodes and associated elements directly
connected to n (e.g., volume outlined by nodes 2 through 8
in Figure 3(b) for node 1). The second-NN environment of
anode n is made of al the nodes and associated elements
directly connected to the nodes of the first-NN environment
(e.g., volume outlined by nodes 7 through 20 in Figure 3(b)
for node 1).

(1) Inactiveand uncoupled FE nodes (open circlesin Figure
3(b)). Thisis the state of the FE nodes whose first-NN
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environment is above the liquidus temperature. Thisis
also the case of an FE node whose temperature is below
Te. The temperature of such nodes at time t,,, is simply
updated using Egs. [6] and [7] with a zero increment
of the fraction of solid, &fs, = O.

(2) Active and coupled FE nodes (filled circles in Figure
3(b)). An FE node is set “Active” and “Coupled” when
at least one liquid cell of its first-NN environment is
undercooled. It remains “Active” and “Coupled” when
at least one liquid cell of its second-NN environment is
undercooled. The fraction of solid and temperature of
such a node is updated using the microenthal py scheme
coupled with the CA model (Egs. [6] through [11]).

(3) Inactive and coupled FE nodes (gray filled circles in
Figure 3(b)). For an FE node not defined by (1) or (2),
the increment of the fraction of solid, ofs, is directly
computed from its microenthalpy variation, sH,, using
Eqg. [10] written for node n. This means that the update
of the fraction of solid and temperature of such FE nodes
is no longer calculated using the CA model. When the
temperature of these nodes reaches the eutectic tempera-
ture, an isothermal transformation is performed until
their fraction of solid, fs, reachesunity (Eq. [11] written
for node n is directly applied to 6H,). The flags of the
nodes are switched to the “Inactive’ and “Uncoupled”
states once the fraction of solid reaches unity (case (1)).

For the activation of the blocks, the same criterion defined
in the weak coupling calculation mode is applied. However,
the deactivation of the blocks is made in two steps in order
to optimize the memory allocation. A first partial release of
the memory is made when all the cells of a block and the
NN cells of adjacent blocks are no longer liquid (similar to
the deactivation procedure used in the weak coupling case).
This memory release is accompanied by a block flag index
switch from “Active’ to “Partialy Active.” In the partialy
active block state, some variables are still kept in memory
(e.g., thefraction of solid of the cellsis still used to compute
the fraction of solid update of the nodes through stage (2)),
whereas others are no longer used (e.g., octahedron size
associated with thecells). A block isswitched from* Partially
Active’ to “Dead” (and the associated memory is totally
released) when all its connected finite elements have all
their nodesin afirst-NN environment which doesnot contain
any liquid cell.

V. APPLICATIONS
A. Automatic Generation of CA Grid

As mentioned in Section IV, one of the main difficulties
associated with the implementation of the 3-D CAFE model
is the dynamic allocation of the cells. A preliminary diffi-
culty is the definition of the blocks and cells, with proper
assignment of reference indexes to cells belonging to exter-
nal and internal boundaries, from the FE mesh. This has to
be done automatically without additional work, and specific
routines have been developed for that purpose.

Figure 4 illustrates the automatic creation of the (b) CA
grid from the (@) FE mesh of a turbine blade geometry.
Only a close-up detail of the junction between the “ pigtail”
selector and the blade platform is shown. The typical cell
size used in the CA calculation is 50 to 100 um.
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Fig. 4—Automatic generation of (b) a cubic cell lattice used by the CA
model from (a) the FE mesh in the platform of a single-crystal turbine
blade geometry located at the exit of a pigtail grain selector.

B. Directionally Solidified Turbine Blade

Figure 5 presents the grain structure of a DS turbine blade
cast by the Snecma (Paris, France) airplane engine company
ascalculated with the 3-D CAFE model inthe weak coupling
mode. The casting ismade of anearly parallelepipedic starter
block, which wasin contact with acopper chill, above which
stands the blade itself. The computation data used in the
simulation (cell size, number of cells, number of elements,
and micro-time-step parameter) are given in Table Il. The
enmeshment, as well as the temperature files, have been
calculated by Snecma using the software ProCAST. Because
the number of cells in the blade is fairly large, specific
storage and graphic tools have also been designed in order
to minimize the result file size and the display time. In the
example shown here, only the “skin” cells of the casting
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Fig. 5—A 3-D view of the final grain structure calculated in the weak coupling mode for a DS turbine blade. The (100) pole figures are displayed for
various cross-sections perpendicular to the main blade axis (geometry provided by Snecma, Paris, France; calculation parameters listed in Table I1).

Tablell. Calculation Parameters and CPU Time (SGI R4400 at 250 MHz)

Directionally Pigtall Continuously
Cast Blade Grain Selector Cast Rod (a/b)
(Figure 5) (Figure 6) (Figure 7)
Cell size, Iy (um) 100 100 50
Micro-time-step parameter, « 1.0 0.5 0.2
Number of FE nodes in casting 34,851 9,655 23,040
Number of cells 21,682,938 2,698,391 18,732,000
CPU time* 5h 35 min 1 h 17 min 16 h 37 min/26 h 31 min

*For the continuously cast rods, the CPU time also includes the heat flow computation. The CPU times cannot be directly compared
because the simulated times and their divisions in macro-time-steps are not the same.

have been displayed: these are the cells that have a nonzero
boundary reference index. Other graphical features imple-
mented in the CAFE postprocessing are the visualization of
grain structuresin selected cross-sections parallel tothemain
axes of the CA grid, growth front at selected times (cells
having at least one liquid neighbor cell at the corresponding
times), nucleation centers, undercooling of the cells at their
time of capture, etc.

The grains in Figure 5 are colored with different gray
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levels. Ascan be seen, the DS bladeismade of long columnar
grains nucleated at the bottom part of the casting. As noted
in previous work,'® the transverse size of these grains is
increasing with the distance from the nucleation surface
(bottom part of the casting in contact with a chill surface).
This is due to the growth competition of dendrites at grain
boundaries, which is also responsible for the evolution of
the crystallographic orientation of the grains. From arandom
orientation at the nucleation surface, the grains that remain
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during the selection process are those that have one of their
(100} directions most closely aligned with the thermal gradi-
ent. In the DS blade of Figure 5, this direction nearly corres-
pondsto its longitudinal axis. The preferential (100) growth
directions of dendritic grains being accounted for in the
3-D CA growth algorithm, the evolution of the texture is
part of the prediction of the CAFE model. This evolution
isillustrated in Figure 5 for the same blade: the (100) pole
figures of the grains seen in four cross-sections taken at
various heights of the casting are displayed. The centers of
these pole figures correspond to the main axis of the blade.
As can be seen, grain selection has aready occurred at the
level of the lowest pole figure, only afew millimeters above
the nucleation surface. At theexit of the starter block (second
pole figure), the remaining grains have their (100) trunk
direction within a cone of semiapex smaller than 20 deg.
Please note that the cloud of points corresponding to these
directions is not precisely centered in the pole figure, the
thermal gradient being slightly misoriented with respect to
the blade axis. The role of the starter block is clearly evi-
denced by the 3-D CAFE simulation: the grains starting to
grow in the blade itself have their (100) directions well
aligned with the blade axis. Nevertheless, grain selection
continues to operate in the blade and only five grains remain
in the upper part.

The number of grainsin aDS airfoil isacommon inspec-
tion criterion used in quality assurance. As can be seen, the
3-D CAFE model provides such information. It also predicts
the grain structure evolution near a platform, which is an
important issue, especialy for the larger blades used in land-
base gas turbines. The CPU time listed in Table Il corres-
ponds in this case only to the CA calculation, using a pre-
vioudly calculated temperaturefield. It isin this case smaller
than the timerequired for the FE cal culation of heat diffusion
and radiation. However, it should be pointed out that the
fairly coarse CA grid used here (100 um) dlightly biases
the prediction of grain selection; the result shown here is
therefore only qualitative. More accurate results could be
obtained by using a finer grid, but the CPU time, file size,
and display timewould increase accordingly. For that reason,
the possibility of “windowing” selected areas has been
implemented in the 3-D CAFE model.

The selection mechanism and texture formation of colum-
nar grainsillustrated in Figure 5 have aready been investi-
gated, both experimentally and numericaly, by Gandin et
al.l¥ This analysis was performed using a simplified CA
agorithm valid for a uniform temperature field. Refined
investigations using the present 3-D CAFE model have been
reported in Reference 26.

C. Sngle Grain Sdlection for Investment Cast Parts

The production of single-crystal turbine blades precisely
uses the grain selection mechanism described earlier in a
complex starter geometry, which eliminates all the grains
but one. The most frequently used geometry is a “pigtail”
selector such as the one shown in Figure 6 (a), and also
partially shown in Figure 4. Until now, the design of such
agrain selector was entirely based on trial and error, whereas
the 3-D CAFE model provides a new and unique tool for
its study and optimization.

Figure 6(a) showsthe grain structure in the pigtail selector
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Initial helix
direction
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Fig. 6—(a) A 3-D computed columnar structure in a pigtail grain selector
used for the production of single-crystal turbine blades by investment
casting and (b) a pole figure of the (100) crystallographic directions at the
level of section A. The center of the projection corresponds to the Z
direction, i.e., the normal to the bottom surface in contact with the chill.
The three circled dots in the pole figure correspond to the (100) directions
of the selected grain seen in the upper section B (calculation parameters
listed in Table I1).

as predicted with the 3-D CAFE model. This pigtail selector
connects a thin disk in contact with a copper chill and the
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bottom platform of the blade (Figure 4). A very high flux
is applied at the disk-chill interface, whereas the other sur-
faces of the casting can be considered as nearly adiabatic.
Indeed, the ceramic mold and insulation materials have very
low thermal conductivities as compared with that of the
metal. Accordingly, the thermal gradient direction follows
the axis of the bottom disk and of the helix selector. In this
simulation, the nucleation parameters are only defined for
the disk-chill boundary. A sharp Gaussian distribution has
been chosen, simulating a burst of nucleation just below the
liquidus temperature. As can be seen, many grains form in
the bottom disk. Some of them enter the restriction of the
vertical section of the pigtail selector. At the level of section
A, about 50 grains have survived to the grain competition,
as can be seen in the associated (100) pole figure shown in
Figure 6 (b). These grains have their (100) dendrite trunk
direction close to the Z-axis, which is perpendicular to the
chill surface. At the level of section A, thisdirection is also
that of the thermal gradient.

As the grains enter now in the helix part of the pigtail,
they see a thermal gradient direction that continuously
evolves along the spiral line. The grain competition in this
complex thermal environment leads to the selection of only
one grain at the exit of the selector (section B). This grain,
whose (100) crystallographic directions are identified by
small circles in Figure 6(b), can then extend freely in the
whole part to form asingle-crystal turbine blade. Please note
that the projection onto a XY plane of the helix direction
starting just above section A is given by the arrow drawn
in Figure 6(b). It corresponds to a rotation of about 45 deg
with respect to the Y-axis. As can be seen, one of the (100)
crystallographic directions of the selected grain remaining
in section B is nearly aligned with thisinitial helix direction
(in fact, this direction points slightly toward the Z direction
and thus appearsin the opposite quadrant of the pole figure.)
Thus, the pigtail has selected one of the grains having a
secondary dendrite arm closely aligned with itsinitial helix
direction. As clearly emphasized by the CAFE calculation,
the selection of the secondary dendrite arms could be used
to produce a turbine blade whose primary and secondary
(100) dendrite arm directions are oriented with respect to
the in-service mechanical stress state.

D. Continuously Cast Rods

The final example shown in this article concerns the con-
tinuous casting of small rods. The 2-D CAFE model was
already applied to such a process;® the extension to 3-D of
these predictions is displayed in Figure 7. In this case, the
FE heat flow simulation was performed for a long cylinder
(about 3 times as long as that shown in Figure 7). Once a
stationary temperature profile was reached, the CA calcula-
tion was started from a fictitious bottom surface on which
nucleation could occur. After some distance, a “ stationary”
grain structure is obtained. It is shown in Figure 7 for two
different casting speeds: the transverse sections correspond
to a steady state, whereas the longitudina sections allow
viewing of the grains from the bottom nucleation surface
up to the solid-liquid interface. (a) at low speed, the liquidus
isotherm isfairly flat, whereas (b) at higher speed, the sump
ismuch deeper. Inthefirst case, the grainsare nearly paralel
to the rod axis and appear as “equiaxed” in the transverse
section. In the second case, they grow inward from the
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Fig. 7—Predicted 3-D grain structures in aluminum-silicon rods that have
been continuously cast at (a) low and (b) high speeds. The grains are shown
in longitudina and transverse sections (calculation parameters listed in
Table I1).

surface and thus appear rather columnar in both longitudinal
and transverse sections. Please note that at low speed, a
small cortical zone of grains nucleated at the lateral surface
of the rods is aso present. The growth of these grains is
not favored in the nearly vertical temperature gradient and
the long columnar grains issued from the nucleation bottom
surface stop them. Although a high solidification rate is
preferred for economical reasons, the grain structure of Fig-
ure 7(b) is often undesirable. Indeed, the grains grow perpen-
dicularly to the surface of the rods, and they meet at the
centerline, thus possibly creating a centerline segregation
detrimental to the extrusion or rolling properties.

VI. CONCLUSIONS

The 3-D CAFE model presented in this article is shown
to reproduce features of solidification grain structures that
were never previously modeled. In particular, the growth
competition occurring among columnar grains is directly
reproduced, taking into account the crystallographic orienta-
tion of thegrainsand thetemperatureevolutioninrepresenta-
tive 3-D parts. The CAFE model aso predicts the growth
of equiaxed grain structures. In fact, the main advantage of
the CA technique coupled with an FE method is that the
grains are either columnar or equiaxed as a direct result of
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the local solidification conditions (i.e., thermal gradient and
cooling rate). It is thus a unique technique for the modeling
of grain structure transitions; both the columnar-to-equiaxed
and equiaxed-to-columnar transitions, previously modeled
using the 2-D CAFE model,'%?" can be reproduced using
the 3-D CAFE model.

Industrial interest of investment casting companies has
clearly been expressed through the funding of the project,
which led to the results presented in this article. It was
justified by thefact that they wanted toimprovetheir solidifi-
cation process by a better understanding and control of the
grain structures formed during casting, including texture
formation in the as-cast products. As demonstrated, the
3-D CAFE model can be used to design and optimize grain
selectors used for the production of single-crystal turbine
blades. The mgjor advantage is then a direct visualization
of the effect of the thermal history on the formation of the
3-D grain structure, while deducing from the calculation the
evolution of both the grain density and texture. Severa
stochastic cal culations could aso be donein order to deduce
the statistical efficiency of a given selector geometry and
its cooling conditions.[*®!

It is believed that the 3-D CAFE model can find other
fields of application because the physical mechanisms of
nucleation and growth of dendritic grains, which are embed-
ded into the CA agorithms, are clearly common to several
solidification processes. The formation of the grain structure
in continuously cast rods could be one of the processes to
benefit from such developments. It would also be interesting
to seeif, inthefuture, the 3-D CAFE model could be coupled
with other fields of materials science and engineering. As
amatter of fact, 3-D simulated grain structures can be used
astheinput for the prediction of some mechanical properties
of as-cast components or of defects associated with grain
boundary (e.g., hot tearing).
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