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Numerical Modelling of Induction Heating of Long
Workpieces

C. Chaboudez, S. Clain, R. Glardon, J. Rappaz, M. Swierkosz and R. Touzani

Abstract—We consider in this paper an induction heating
process. A mathematical model is presented, together with nu-
merical methods used in order to describe the magnetic field,
as well as the temperature field evolution. Experimental mea-
surements were performed in order to validate the numerical
simulation results. A comparison is presented for both ferro-
magnetic and non-ferromagnetic materials. An error discus-
sion is provided.

I. INTRODUCTION

HE induction heating process is widely used in in-
dustrial operations like metal hardening, preheating
for forging operations or brasing [2]. It consists in gen-
erating heat by means of the Joule effect resulting from

an eddy current. Despite the apparent simplicity of this-

description, induction heating is a complex phenomenon.
Therefore, the design of an induction heating system can
be tedious and often relies upon an experimentally based
trial and error process. Furthermore, temperature mea-
surements inside workpieces are expensive and time-con-
suming. As they do not provide much general information
about the process, they must be repeated for every single
heating case. Moreover, precise temperature measure-
ments are difficult to perform, and introducing tempera-
ture sensors into the induction heating setup often results
in perturbating the phenomenon.

Therefore, numerical simulation seems a well-adapted
tool for the design and the investigation of induction heat-
ing systems. Thanks to the progress accomplished these
last years in computer technology, it is now possible to
efficiently handle several cases of induction heating in a
short time, and a modification of the experimental param-
eters implies very little additional work. This allows for
a considerable reduction of the time and design costs re-
quired for the development of an induction heating unit,
since much of the experimental work can be replaced by
computer simulation. Although eddy currents computa-
tion is the subject of many articles (e.g. [6]-[8]), numer-
ical simulation of induction heating has not been exten-
sively described in the literature, and most of the authors
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limit their scope to induction heating systems with simple
geometries [4], [9]-[19].

Our research, conducted at the Department of Mathe-
matics of the Federal Institute of Technology in Lau-
sanne, Switzerland in collaboration with the company
AMYSA Yverdon S.A., and financed by the Swiss Na-
tional Energy Research Fund (NEFF) aims at elaborating
mathematical and numerical models, and constructing ef-
ficient numerical codes for the simulation of induction
heating.

We have first dealt with the situation when the induc-
tion heating setup (coil and heated workpieces) is long
and has a constant cross-section. The mathematical model
obtained in this case is not exceedingly intricated, yet the
numerical code based on this model yields valuable re-
sults, as will be shown in the sequel. It deals with both
ferromagnetic and non-ferromagnetic materials, the phys-
ical properties of which may vary both with the temper-
ature and with the magnetic field. It also can handle non-
sinusoidal currents, which are widely used in industrial
applications. The results given by the code have been
compared with experimental measurements performed by
the company AMYSA Yverdon S.A. This comparison
gave very good results.

In this note, we will briefly present our model and nu-
merical methods implemented in the code. Then, we will
describe the induction heating setup used for in-situ mea-
surements. Finally, comparisons between numerical sim-
ulation and in-situ experiments will be presented.

II. NUMERICAL SIMULATION: MATHEMATICAL MODEL
AND NUMERICAL METHODS

A. The Model

As stated above, we deal with the situation when the
induction heating setup has a constant cross-section, the
dimensions of which are small compared to the setup
length. Practically, our model gives consistent results in
the central part of the workpiece (i.e., far from its ends)
when the length of the setup is at least four times larger
than the diameter of the workpiece, and the precision of
the results increases when this proportion grows bigger.
These conditions on the dimension of the setup allow us
to use the assumption that the magnetic field is orthogonal
to the setup cross-section. The mathematical description
of the magnetic field is then considerably simplified. A
detailed description of the model can be found in [1].

0018-9464/94504.00 © 1994 IEEE
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Consider a setup consisting of a coil and of one or sev-
eral workpieces. We consider that the physical properties
of the materials, namely the magnetic permeability p, the
electric conductivity o, the thermal conductivity A, the
density p and the specific heat C, depend on the temper-
ature. They also depend on the spatial coordinates, since

the workpieces and the coil may consist of different ma-

terials. Moreover, in the case of ferromagnetic materials,
the magnetic permeability px depends also on the local
value of the magnetic field H. However, hysteresis loops
will not be taken into account, and we will replace them
(like in [3], [4], [S]) by a single valued, possibly nonlin-
ear, dependence of u on H. The voltage in the circuit will
be prescribed, rather than the total current. This choice
was motivated by the fact that the voltage is better con-
trolled than the total current, due to the used generator
technology. Typically, the currents involved are periodic
(not necessarily sinusoidal), with a frequency of the order
of 10 000 Hz. Displacement currents will be neglected.

Our assumptions imply that the magnetic field H is per-
pendicular to the cross section of the conductors, and that
it depends on the time and on the position in the cross
section. The basis for our mathematical description are
the Maxwell equations and the Ohm law. Let A denote
the cross section of the induction heating system, i.e., the
coil, the workpieces, and the space between them, and let
{2 denote the cross-section of the coil and the workpieces
only. After performing suitable eliminations, we get the
following equation for H, the component of the magnetic
field H perpendicular to the cross section of the con-
ductors:

(uH)

e div (6 "'VH) = 0

inside Q, (2a)
where div and V denote the classical operators ‘‘diver-
gence’’ and ‘‘gradient.’’ Furthermore, we can deduce that
the value of H is constant in the space between the coil

and the workpieces, and that

H = 0 outside the setup. (2b)

Moreover, if we assume that there are no surface currents

(X3

(i.e., no ‘“‘infinite jump’’ of the electric current field at
the surface of the conductors), we obtain that

H is continuous accross the boundaries of the conductors.
(2¢)

Finally, to impose the tension z, we have the additional
condition:

3
=— | uHdx
S N @d

The equation (2a) together with boundary conditions (2b,
¢, d) gives rise to the following variational problem:
Find

H:0, i[>V
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Fig. 1. The cross-section of an induction heating setup.

such that:
d
— g uHé dx + g oVH - Vo dx = vg,
dr Ja Q
vepeV, te]0, 1], (2e)
H(-, 0) = H,, (2f)

where V is a suitable functional space, (0, t) is a given
time interval, and Hj is a given initial magnetic field.

The problem described above will be coupled with the
heat equation. As heating due to hysteresis is neglected
[31, [41, [5], the heating Joule power is limited to the term
o ~'|VH|?. Furthermore, we will assume that the conduc-
tors do not interact thermally. In fact, in practical appli-
cations the inductor is cooled, e.g., by a water stream.
This allows us to search for the temperature distribution
separately for every workpiece. The temperature field T
in the workpiece satisfies the heat equation:

oT . -
oC, i div(\VT) = ¢ "'|VH?,

On the boundary of each workpiece, the following radia-
tion condition will be prescribed:

(2g)

A‘;—g + T* — Thm) =0,
where « is the product of the Stefan-Boltzman constant
by the material emissivity coefficient, and T, is the am-
bient temperature. As Ty, is usually small compared to
T*, it is often neglected. This condition is justified if the
cross-section of the workpiece is convex and there is a
large difference between the temperature on the boundary
of the workpiece and the temperature in the vicinity of the
workpiece.

An empirical convection law can also be considered,
which leads to replacing the condition (2h) by the condi-
tion:

(2h)

T
A g—n + T = T ) + BT = 0,

where 8 is a proportionality coeflicient.
The thermal problem also gives rise to a variational for-

mulation.
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The complete model consists in coupling the two prob-
lems (2b) and (2e), which will be solved in the given time
interval (0, t). Besides the initial magnetic field H, (usu-
ally taken to be zero), an initial temperature field T, will
also be given.

This model involves nonlinearities of two kinds: the
first due to the heat source term in the heat equation (2¢),
and the second due to the dependence of physical prop-
erties of the conductors on the temperature and possibly
on the magnetic field.

B. Numerical Solution

As said above, it has been chosen to solve a time-de-
pendent electromagnetic problem rather than a stationary
one. This allows us to handle non-sinusoidal currents, as
well as ferromagnetic materials, for which even an in-
jected sinusoidal tension gives rise to a non-sinusoidal
magnetic field.

Several characteristics specific to the problem require
the use of adapted numerical algorithms. First, the two
phenomena (electromagnetic and thermal) involve very
different time scales. In fact, the electric current frequen-
cies typically used for induction heating are of the order
10 000 Hz, resulting in a severely oscillating magnetic
field, whereas the temperature varies on a timescale ex-
pressed in seconds. It can thus be expected that the tem-
perature field reacts only to a mean value of the power
density of the magnetic field.

This idea lies at the basis of our ‘‘double stepsize al-
gorithm,”” resulting in decoupling equations (2a) and (2c).
For a given temperature field, the magnetic field problem
(2b) is a parabolic equation with a time-periodic source
term (the tension v), and it turns out that it tends quickly
to a time-periodic solution. We solve this equation using
“‘small’’ timesteps (several timesteps per electric current
period), until a time-periodic solution is obtained. Then,
the heat equation is involved using a ‘‘large’” timestep (of
the order of a second). Let us remark that the time-peri-
odic electromagnetic solution is obtained after a time
which is small compared to this ‘‘large’” (thermal) time-
step. The rapidly varying source term in the heat equation
is replaced by the averaged value over one electric current
period, computed on the basis of the previously obtained
time-periodic magnetic field. The solution of the heat
equation yields a new temperature field. Next, we update
the physical properties of the conductors (g, o, p, C,, N)
taking into account the new value of the temperature in
the mesh points. The magnetic field equation can then be
solved again, and the whole procedure is repeated as many
times as necessary.

In the case of ferromagnetic materials (i.e., when the
magnetic permeability p varies also with the magnetic
field), computation efficiency respects exclude the updat-
ing of u at every ‘‘small”’ timestep. In fact, if we assume
that all the coefficients of the equation (2a) are constant
during a ‘‘large’’ timestep, solving this equation involves
performing several times a large matrix system resolution
using the same matrix and a varying right-hand side. Up-
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dating u with respect to the magnetic field would involve
computing and factorizing the system matrix at every
“‘small”’ timestep, resulting in unreasonably long com-
putation times. To avoid this, we chose to replace the ac-
tual value of x by an ‘‘equivalent magnetic permeability”’
used during the whole ‘‘large”’ timestep [4], [5]. After
testing several algorithms, we opted for the arithmetic
time average of the magnetic permeability. Using the pe-
riodic solution of the magnetic field equation (2a), actual
values of p at every node of the mesh are computed during
a period, then an arithmetic average over this period is
computed for every node, and used as *‘equivalent mag-
netic permeability’’ for the next large timestep. This pro-
cedure gives satisfactory results compared to the compu-
tation using actual values of u [1], and saves much
computation time. An additional advantage is the fact that
the computation using the ‘‘equivalent magnetic perme-
ability”> gives rise to a much smoother magnetic field,
which can be computed using much less ‘‘small’’ time-
steps per period of electric current.

Another difficulty related with ferromagnetic materials
is the abrupt variation in the physical properties when the
temperature reaches the Curie point. A suitable numerical
scheme had to be chosen to deal with this situation.

For both ferromagnetic and non-ferromagnetic mate-
rials, particular attention must be paid to the choice of the
mesh, due to the so-called skin effect, which implies that
in most practical applications the whole heating effect is
concentrated near the surface of the workpiece, and heat
is carried further by diffusion. Therefore, an appropriate
mesh with a geometric element size progression near the
boundary of the workpiece must be used. However, too
coarse a mesh inside the workpiece would result in an
inaccurate temperature field computation. The situation
becomes even more intricated in the case of ferromagnetic
materials, since the skin depth after the Curie point is quite
different from the one before the Curie point. However,
the skin depth can be estimated before performing the
computation, so that the usefulness of an adaptive mesh
technique has not been proven.

A numerical simulation code has been developed on the
basis of the above presented model. It can handle periodic
electric currents of any shape, and both ferromagnetic and
non-ferromagnetic materials. The possibility of varying
the tension, and of using several generators supplying dif-
ferent electrical current frequencies has been taken into
account. A campaign of in situ measurements has been
carried through by the company AMYSA Yverdon S.A.
in order to validate the code. Comparisons between the
results of this campaign and numerical simulation will be
presented in Section IV.

III. THE MEASUREMENT SETUP USED FOR in situ
EXPERIMENTS

The measurement bank set up by the company AMYSA

Yverdon allows the measurement of the temperature, the
voltage, and optionally the current intensity and the mag-
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Fig. 2. The measurement setup.

netic field during the induction heating process. It consists
basically of an electric current generator, a coil and one
or several workpieces. Different coils and workpieces can
be used. A multi-track data recorder is used for the cap-
ture of the temperature measured by thermoelements, and
an oscilloscope for the measurement of the voltage.

The generator delivers a power of 125 kW at 10 kHz.
The measurement of the temperature is performed using
NiCr/NiAl type K thermoelements of 0.2 mm diameter.
As for the measurements of the temperature at the surface
of the workpiece, the thermoelements have been welded
to the workpiece. The measurements of the temperature
inside the workpiece have been carried out by contact,
introducing the thermoelement inside a thin hole drilled
into the workpiece. For every measurement, thermoele-
ments have been arranged at three different points, situ-
ated on the surface or inside the workpiece. The locations
of these points have been chosen in function of previously
performed numerical simulations, the role of which was
to give a rough idea of the thermal behavior of the work-
pieces.

Three different coils have been used for the experi-
ments, each of them having 25 windings and a length of
530 mm. Two of them have circular cross-sections, of
inner diameters 74 mm and 64 mm, respectively. The
cross-section of the third resembles a rectangle of 95 mm
by 36 mm with rounded corners.

The workpiece materials used for the experiments are:
non-ferromagnetic stainless steel X5CrNi 18/9 (1.4301)
and ferromagnetic steels ST 37-2 (1.0037) and ST 44-3
DIN 17100 (1.0144). These materials have been chosen,
rather than copper or aluminum alloys, because they are
characterized by a relatively weak thermal conductivity,
and they allow an easy fixation of thermoelements, so as
to ensure valuable measurements. To get high tempera-
ture gradients, short heating times and the higher power
range of the electrical generator have mostly been used.
This enhances the quality of the comparison between the
experiment and the numerical simulation. In the case of
ferromagnetic steel, the voltage was manually increased
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after reaching the Curie point. Without this adjustment,
the applied voltage would not have been sufficient to get
a further increase in temperature.

To increase the reliability of the results, all the mea-
surements have been repeated three times. The fragility
of the fixed thermoelements required a slow cooling of the
workpiece. Therefore, only two daily measurements could
be performed.

Due to the manual adjustment of the voltage, it is dif-
ficult to obtain two identical measurements for ferro-
magnetic steel. The reproducibility analysis has therefore
to be carried out on the basis of the measurements on non-
ferromagnetic stainless steel. It turns out that these mea-
surements present a discrepancy of about +1% for the
measurements of the temperature at the surface of the
piece, and +2% for the measurements inside the work-
piece. It must be stressed that the total energy of the elec-
tric current may slightly vary from one experience to an-
other, due to the error in the measurement of the voltage.
As the energy is roughly speaking a quadratic function of
the voltage, it seems sensible to affirm that the effective
reproducibility of the measurements at the surface is even
better than +1%.

The precision of the temperature measurements de-
pends on several factors, such as the thermoelements
themselves, the quality of the thermal contact between the
thermoelement and the workpiece, the errors of the re-
cording device and the reading errors. In view of our ex-
periments, it can be roughly estimated as being of the or-
der of +10° Celsius.

IV. COMPARISONS BETWEEN MEASUREMENTS AND
NUMERICAL SIMULATION

A. The Measurements

We will now present two sample comparisons between
measurement and numerical simulation. The main char-
acteristics of the performed measurements are gathered in
Table 1.

The first comparison is carried out on a long non-fer-
romagnetic X5CrNi 18/9 (1.4301) stainless steel part. The
thermoelements are placed at the three locations indicated
on Fig. 4 by the letters C, M, 1. In the second compari-
son, the workpiece is a tube made of ferromagnetic ST
44-3 (1.0144) steel. The locations of the three thermoele-
ments are indicated on Fig. 3 by the letters C, M, L.

B. The Computations

The meshes used for the numerical simulations corre-
sponding to the experiments described above have been
represented on Figs. 3 and 4. The main issue consists in
choosing suitable input data for the numerical code. The
first delicate point is the choice of the voltage, v. In fact,
the mathematical model we use is a simplification of the
reality, since it assumes that the coil consists of only one
‘‘very long”’ winding. The voltage v from the model,
being the voltage imposed in such a coil, cannot be di-
rectly transformed into the ‘‘voltage per winding’’ in the
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TABLE 1
CHARACTERISTICS OF THE EXPERIMENTAL MEASUREMENTS

Comparison 1

Comparison 2

Workpiece material

Workpiece cross-section shape

Number of windings in the 25
inductor

Total inductor length 530 mm

Inductor material copper

Inductor cross-section shape

X5CrNi 18/9 (1.4301) stainless
steel (non-ferromagnetic)
Rectangie 70 mm by 20 mm

resembles a rectangle 95 by 36 mm

ST 44-3 (1.0144) steel
(ferromagnetic)

tube; external shape resembling a
rectangle 50 by 30 mm with
rounded corners, thickness 5 mm

25

530 mm
copper
circular, radius 84 mm

with rounded comers

Current frequency 9.867 kHz

Effective voltage applied 306 Volts

Total heating time 80s

Total temperature measurement 180 s
time

Current intensity delivered by 180 A-210 A
generator

Current intensity flowing through 983 A-1026 A
the coil

Electrical power injected 53 kW-64 kW

9.867 kHz

164 V during 69 s (until Curie point
is reached) then gradually
increased until it reaches a value
of 408 V at 79 seconds, then kept
constant at 408 V

91s

190 s

100 A-230 A
388 A-966 A

38 kW-59 kW

NN SN SN SED
4' wmmmr P VA VA WA N g

«mmmmmmmmﬂsi

D Vo AN Xd""'r S
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Fig. 3. The cross-section of the induction heating setup used for compar-
ison 1.

1 M C

/

Fig. 4. Locations of the thermoelements on the workpiece for comparison
1.

real coil. This is due to the fact that the real coil has a
finite length, and that its windings are separated by air
gaps. This leads to magnetic field losses through the ex-
tremities of the coil and through the winding gaps, which
are not taken into account in the model. Therefore, we
decided to perform a fitting of the voltage v. This is done
in the following way: one of the measurement points is
chosen as reference. We adjust the voltage data in such a
way that the temperature at this point, at the end of the
heating, obtained by numerical simulation matches the
temperature measured in situ. Then, the temperature dis-
tribution in the workpiece, as well as its evolution during
the whole experiment time, match well the reality. Such
a practice is widely used in numerical simulation.

Fig. 5. The cross-section of the induction heating setup used for compar-
ison 2.

It is clear that this procedure requires a measurement to
be carried out to obtain numerical results matching the
reality. However, one single measurement (e.g., the mea-
surement of the temperature at a given point of the work-
piece at a given time ) allows us to accurately predict the
thermal behavior at every point of the workpiece during
the whole induction heating process. Instead of perform-
ing a fitting of the voltage v, empirical conversion for-
mulas accounting for the size of the windings, their num-
ber, and the size of the airgaps could be used.
Nevertheless, the results obtained using these formulas
yield a larger error (about 15-20%) compared to the nu-
merical simulation with a fitting of v and to the measure-
ment.

Another difficult issue is the choice of the dependence
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functions of the physical properties (u, o, p, C,, \) on
the temperature and on the magnetic field (for u only).
Whereas the form of this dependence is generally well-
known for simple bodies, this is not the case for alloys,
such as different kinds of steel. Moreover, a slight vari-
ation in the composition of the alloy may have a strong
influence on the physical properties. Nevertheless, simu-
lations performed with data that approximate even in a
rough way the thermal behavior of the materials give very
satisfactory results. It is worth noticing that .a better
knowledge of this behavior may considerably enhance the
quality of the numerical simulation.

Finally, a very delicate point is the choice of the radia-
tion coefficient to be used by the code. This coefficient
greatly varies not only with the kind of material used, but
to a large extent with the condition of the external surface
of the workpiece. The results obtained may differ accord-
ing to whether the workpiece was already heated before
or not. In practice, it is very difficult to establish precisely
the value of this coefficient. It is therefore necessary to fit
it, i.e., to choose it in such a way that the slope of the
temperature curve in a specified point of the workpiece
during the cooling phase matches the curve obtained by
measurement.

C. The Comparison

We will first consider the case of the stainless steel rod.
The physical properties of the stainless steel are consid-
ered to be as follows: the magnetic permeability of stain-
less steel p expressed in Tm/A is assumed to be py = 47
X 1077, The conductivity o (expressed in @~ 'm™") varies
with the temperature T according to the formula:

' 1
T =
oD = T T o 1 dr

with @ = 4.9659 x 1077, b = 84121 x 107'°, ¢ =
—3.7246 x 107" and d = 6.1960 x 10~"". The thermal
conductivity A (in Wm™'K ™) is

NT) = 100(a + bT),

with a = 0.11215 and b = 1.4087 X 10*; and the vol-
umic heat capacity pC, (in JK™'m™%) has the form:

pC,(T) = 7.9 x 10° (a + bT),

with @ = 3.562 X 107" and b = 0.988 X 107*. The
electromagnetic properties of copper (used for the induc-
tor) are:

K Ho»

1
a + bT + ¢T? + dT¥’

o(T) =

with @ = —3.033 X 107, b = 68.85 x 1072, ¢ =
—6.72 X 1077, d = 8.56 x 107 '%. The figure 7 repre-
sents the isothermal contours in the workpiece at the end
of the heating (i.e., after 80 s). The interval between two
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Fig. 7. Comparison 1: Temperature isolines at the end of the heating.

Temperature evolution (numerical simulation)
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g 600 :
2 7
5 400 o
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time (s)

Fig. 8. Comparison 1: Temperature evolution curves at the measurement
points obtained by numerical simulation.

tsolines is 5°C. The voltage v was fitted with respect to
the point M.

Fig. 8 shows the temperature evolution curves obtained
by numerical simulation for the points where the ther-
moelements have been arranged during the in situ mea-
surements. It can be seen that the best moment for per-
forming a forging operation would be ten seconds after
the voltage cutoff (i.e., at 90 sec.), when the difference
in temperature between the three points does not exceed
10°C.

Finally, Figs. 9, 10, 11 show a comparison between
the temperature evolution curves obtained by measure-
ment and by numerical simulation.

It can be noticed that for points M and C, the difference
in temperature between measurement and numerical sim-
ulation is less than 10°C, while at the point I, it is less
than 20°C. These figures are of the order of the experi-
mental error margin, which was estimated to be 1% in the
first case and 2% in the second.
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Fig. 9. Comparison 1: Comparison between measurement and numerical

simulation for point M.

Temperature evolution at point C
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Fig. 10. Comparison 1: Comparison between measurement and numerical
simulation for point C.
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Fig. 11. Comparison !: Comparison between measurement and numerical
simulation for point /.

The second comparison involves a ST 44-3 steel tube
inside a copper inductor. The numerical simulation is
much more delicate in this case, since the workpiece ma-
terial is ferromagnetic. With the temperature T expressed
in Kelvins and the magnetic field A expressed in A/m, the
characteristics of the ST 44-3 steel are taken to be as fol-
fows: the magnetic permeability p expressed in Tm/A is
o = 4w X 1077 above the Curie point, i.e. for T greater
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than 1033 Kelvins (760°C). Below the Curie point, the
expression for u is:

la-T b
WH, T) = po [ 1+ |2F—= ——),
a H

a = 1033, b = 2000, ¢ = 200.
The conductivity o (expressed in @ 'm™") varies with
the temperature T according to the formula:
T—-c¢
TY=a-b»b .
o) =a 7
Below the Curie point (for 7 < 1033 K), we take a
5.55 x 10°, b = 4.468 x 10°, ¢ = 293 and d = 740.
Above the Curie point (T > 1033 K), we take a = 0.952
x 10% b = 0.125 x 10%, ¢ = 1033 and d = 240. The
thermal conductivity A (in Wm™'K™") is:
T—c¢
d b
where, for T below 1123 K (850°C) a = 70, b = 42, ¢
= 293, d = 830. For Tabove 1123 K, a = 28, b = —4,
c = 1123, d = 150.
Finally, the volumic heat capacity pC, (in JK™'m™>)
has the form:
T-¢
d 2

where oo = 8500. For T below 993 K, a = 400, b = 410,
¢ =293, d = 680. For T between 993 and 1033 K, a
910, b = 1190, ¢ = 993, d = 60. For T between 993 and
1033 K, a = 2100, b = —1500, ¢ 1033, d = 40.
Finally, for T above 1073 K, pC, is considered constant:
a=600,b=0.

The electromagnetic properties of copper have been
given above.

The experiment consists in heating the workpiece dur-
ing 91 seconds, until it reaches a temperature above
1000°C, then letting it cool down for a similar lapse of
time. The voltage applied at the beginning of the heating
is 164 V, which corresponds to the power limit of the
generator used. After the Curie point has been reached
and the impedance of the system has lowered, the voltage
is gradually increased until it reaches a value of 408 V.
This operation is carried over between the 69th and the
79th second of the heating. The variation of the voltage
in time is nearly linear. This method, widely used in in-
dustrial practice, was dictated by the used generator setup.
It allows the full use of the maximum power delivered by
the generator and prevents the temperature from remain-
ing stationary after the Curie point.

The figure 12 shows the isothermal contours in the
workpiece at the end of the heating. The interval between
two isolines is 5°C. The voltage v was fitted with respect
to the point M.

The figure 13 shows the temperature evolution curves

AN{T)=a—-1b

pC,(T) = « <a + b
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Fig. 12. Comparison 1: Temperature isolines at the end of the heating.
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points obtained by numerical simulation.
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Fig. 14. Comparison 2: Comparison between measurement and numerical
simulation for point M.

obtained by numerical simulation for the points where the
thermoelements have been arranged during the experi-
mental measurements.

Finally, the figures 14, 15 and 16 show a comparison
between the evolution curves obtained by measurement
and by numerical simulation.

The discrepancy between measurement and numerical
simulation at the point / during the initial phase of the
heating can be explained by a greater thermal inertia of
the thermoelement located inside the workpiece. In fact,
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Fig. 15. Comparison 2: Comparison between measurement and numerical
simulation for point C.
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Fig. 16. Comparison 2: Comparison between measurement and numerical
simulation for point /.

while the thermoelements located at the points M and C
are welded to the workpiece, the measurement of the tem-
perature at the point [ is carried out by contact, which
increases the thermal inertia. A similar phenomenon can
be observed on Fig. 16.

In spite of the fact that the material properties of the
steel vary quite strongly, we can observe that the differ-
ences between experiment and numerical solution are still
of the order of the error margin. Also in this case, nu-
merical simulation proves to be a valuable tool.

V. CONCLUSION

The above results show that numerical simulation can
be a precious tool in induction heating design. The nu-
merical results agree with experiments within the mea-
surement error margin. Therefore, numerical simulation
can be used to predict the behavior of induction heating
phenomena, avoiding thus long and costly experiments.

In the case of a simple workpiece and inductor geom-
etry, the thermal behavior of the workpiece is usually
well-known. Nevertheless, numerical simulation can help
to get a more homogeneous temperature distribution. In
fact, the measurement of the temperature inside the work-
piece is difficult, especially if the heating takes place on
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a production line. In forging operations, numerical sim-
ulation allows to predict how much time must be elapsed
between the electric current cutoff and the forging, so as
to get the most homogeneous temperature distribution in-
side the workpiece.

When the geometry of workpieces and inductors is
complex, little can be said about the heating a priori on
an experimental basis. Numerical simulation has the ad-
vantage of accurately predicting the temperature field in
the whole piece, while punctual results obtained by mea-
surement do not give the full image of the thermal behav-
ior of the workpiece, which may lead to inadequate con-
clusions.

Finally, in the case of fast heating processes, involving
high power densities in a short time, accurate measure-
ments are extremely difficult to perform. Such processes
are more and more required in today’s industry in order
to get high production rates, and the help of numerical
simulation in this case can be invaluable.
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