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Abstract

A two-dimensional model for the simulation of microstructure formation during solidification in multi-component
systems has been developed. The model is based on a new pseudo-front tracking technique for the calculation of the
evolution of interfaces that are governed by solute diffusion and the Gibbs–Thomson effect. The diffusion equations
are solved in the primary solid phase and in the liquid using an explicit finite volume method formulated for a regular
hexagonal grid. Volume elements located in the liquid phase undergo a transition to interfacial (or mushy) cells before
being incorporated in the solid phase. This layer of interfacial elements, which always separates the solid from the
liquid sub-domains, permits to handle the displacement of the interface in agreement with the flux condition at the
interface. The interface curvature is obtained from the field of the signed distance to the interface, as reconstructed
with a PLIC (piecewise linear interface calculation) technique. The concentrations at the solid–liquid interface are
calculated using thermodynamic data provided by the phase diagram softwareThermo-Calc [Sundmanet al. CAL-
PHAD 1987;9:153]. Different coupling strategies between the microstructure model andThermo-Calc have been
developed, in particular a computationally-efficient direct coupling using the TQ-interface ofThermo-Calc.

After testing the accuracy of the model with respect to curvature calculation, comparisons are made with predictions
obtained with the marginal stability theory, a one-dimensional front-tracking method and two-dimensional phase-field
simulations of dendritic growth in binary alloys. The model is then used to describe the formation of several grains
in an Al–1%Mg–1%Si alloy, as a function of the heat extraction rate and inoculation conditions. It is shown that the
model is capable of reproducing the transition between globular and dendritic morphologies. 2002 Acta Materialia
Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The prediction of microstructure formation is a
key issue in material science and technology. In
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casting processes, macrosegregation phenomena
occurring on the scale of the ingot are closely con-
nected to the solute redistribution at the dimension
of the grains and to the permeability of the mushy
zone, both being strongly influenced by the mor-
phology of the primary phase. In aluminium alloys,
control of the amount, distribution and size of
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intermetallic particles during casting and homo-
genization is of primary importance for the sub-
sequent rolling and forming operations. An
important step in the formation of as-cast micro-
structures is the growth of the primary phase from
the melt. This step determines the grain mor-
phology, which can be either globular, globulo-
dendritic or fully dendritic, depending on the
inoculation and cooling conditions. Furthermore,
the solute redistribution in the solid and liquid
phases during primary solidification and the asso-
ciated solidification path control the type and
amount of intermetallic particles that form. A
description of the primary phase formation
accounting for grain morphology and microsegre-
gation is therefore essential to predict correctly
intermetallic particles in as-cast microstructures.

Modelling the evolution of the grain mor-
phology is a very difficult numerical problem for
solid–liquid interfaces moving in two- or three-
dimensions. Assuming that the phase transform-
ation is mainly governed by diffusion and curva-
ture (Gibbs–Thomson effect), the normal velocity
of the interface can be determined from a local sol-
ute balance and a calculation of the curvature.
However, in practical situations, the undercooling
associated with diffusion (typically a few degrees)
is usually two orders of magnitude higher than that
associated with curvature for primary phase solidi-
fication1. Worse, the growth direction, shape and
kinetics of dendrites are strongly influenced by the
anisotropy of the chemical potential, which is
linked to the anisotropy of the interfacial energy
(and its second derivative). In most common met-
als, the anisotropy of the interfacial energy is very
small (a few percents), thus making the problem
even more difficult.

A numerical solution to this difficult moving
boundary problem can be obtained by using a
front-tracking technique based either on boundary
element (BEM) [2] or finite element (FEM)
methods [3,4]. BEM has been applied successfully
to the stationary growth of a free dendrite tip in a
thermal gradient [2] but involves heavy mathemat-
ical developments, especially for non-stationary

1 Unlike eutectics where both undercoolings are comparable.

situations. FEM on the other hand involves
remeshing procedures and is limited to phase trans-
formations that do not involve important mor-
phology changes. It has been used for example for
the calculation of dissolution of pearlite during re-
austenitization of steel [4]. In addition to involving
large computational times, these techniques do not
seem well adapted to the later stages of solidifi-
cation, when topological changes associated with
bridging occur. On the other hand, since the 1990s,
the phase field model (PF) has been the subject of
numerous research in the field of microstructure
predictions [5–16]. The PF method has been
applied successfully to the solidification of pure
metals [5,6], binary alloys [7–9], eutectic growth
[10], three-dimensional growth [6,11] and recently,
formulations for multi-component and multiphase
systems have been proposed [12,13]. Detailed
comparisons have demonstrated that the predicted
growth kinetics of a dendrite tip for a binary alloy
is in good agreement with experimental results [14]
and solvability theory [15], provided that the inter-
face thickness is sufficiently small. However,
available computational resources generally
impose a lower limit for the interface thickness,
which results in artificial non-equilibrium effects.
This condition limits presently the application of
the PF method to relatively large undercooling and
small grain size, unless adaptive mesh refinement
techniques are used [9] and/or corrections terms for
non-equilibrium effects are added [16].

Pseudo-front tracking methods (PFT) [17–19],
which are somewhat in between the PF and front-
tracking methods, allow calculations of the primary
phase formation to be performed at lower
undercooling without the non-equilibrium effects
present in PF modelling. However, these tech-
niques usually involve fairly large grid anisotropy,
i.e. the growth direction and kinetics of the den-
drites tend to be influenced by the orientation and
size of the mesh. Such numerical effects are often
not very well characterised in simulations of den-
dritic solidification based upon such methods. One
of the objectives of the work presented here is to
formulate a PFT model where these effects are
minimised and characterised.

The model presented here has for objective the
description of the primary phase formation during



1911A. Jacot, M. Rappaz / Acta Materialia 50 (2002) 1909–1926

solidification in multi-component alloys. The
model is based on the two-dimensional PFT
method which was originally developed for the
description of austenitization in Fe–C steels upon
heating [17]. The diffusion equations are solved in
the liquid and solid phases using an explicit finite
volume scheme and special interfacial elements are
introduced to account for the boundary conditions
on the interface. The original model [17] has been
adapted to solidification problems by introducing
the Gibbs-Thomson effect and by extending it to
multi-component systems. In addition, the model
has been coupled with the phase diagram software
Thermo-Calc, using different coupling strategies,
and in particular a computationally-efficient direct
coupling based on Thermo-Calc TQ interface.
The accuracy of the numerical method used to cal-
culate diffusion, curvature and cell transition is first
assessed through comparisons with sharp interface
and PF simulations. The model is then applied to
the solidification of an Al–Mg–Si alloy under dif-
ferent cooling and nucleation conditions.

2. Description of the model

2.1. Main assumptions and general structure of
the model

Assuming that the temperature is uniform on the
scale of the microstructure and that the phase trans-
formation is only governed by the diffusion of the
solute element(s) and curvature, growth of the pri-
mary phase (α) from the liquid (l) can be described
with the following set of equations:

∂wi
n

∂t
� div[Di

ngrad wi
n] with i (1)

� 1,2,…,n and n � α,l

where n is the number of alloying elements in the
multi-component system, wni is the concentration
and Dni the diffusion coefficient of element (i) in
phase (n). Cross diffusion is neglected. The follow-
ing solute balance must be satisfied at the α/l inter-
face:

Dα
i �∂wi

α∗

∂n ��Dl
i�∂wi

l∗

∂n � � v ·n (wi
l∗�wi

α∗), (2)

where v is the interface velocity and n is the nor-
mal vector to the interface pointing towards the
liquid. The superscript ‘∗’ denotes concentrations
(or gradients) taken at the curved interface. The
concentrations wl∗

i and wα∗
i in each phase can be

deduced from the phase diagram and the interface
curvature (see next section).

The diffusion problem made of Eqs. (1) and(2)
is solved with an explicit finite volume method for-
mulated for a regular hexagonal fixed grid (see Fig.
1) [17]. A volume element or cell of the mesh has
three possible states: solid (α), liquid (l), or inter-
face (mushy). A layer of interface cells always sep-
arates liquid cells from α-cells. The solute concen-
trations in each cell are represented by a set of
variables {wi; i=1, n}. Additional variables are
attributed to interfacial cells: the volumetric solid
fraction, gα, and the interfacial concentrations of
the solute elements in the solid and liquid phases,
wl∗

i and wα∗
i . The concentrations, wi, in these cells

correspond to volume averages of the concen-
trations in the liquid and solid phases, i.e. wi �
gαwα∗

i � (1�gα)wl∗
i .

The first operation performed during one time
step is a heat balance based on the assumption of
uniform temperature on the scale of the calcu-
lation domain:

Ḣ � cp

dT
dt

�L
dgα

dt
, (3)

where Ḣ is the heat extraction rate, cp the volu-
metric specific heat and L the volumetric latent
heat of fusion. The evolution of the heat extraction
rate, Ḣ(t), being an input of the calculation, Eq. (3)
allows the temperature, T, to be calculated once
the solidification rate, ġα, is known from the pre-
vious time step (i.e. summation of the variations,
dgK

α, of all the interfacial cells).
The next operation is the calculation of solute

diffusion in the liquid and solid phases for each
solute element. This is done using an explicit
scheme [17]. For interfacial cells, the variations of
the average concentrations, δwi, obtained in this
way are transformed into variations of the volume
fraction of solid. This is detailed in Section 2.2
together with the state transition algorithm used to
displace the interface in the domain. The next oper-
ations performed within each time step are con-
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Fig. 1. Hexagonal grid used to solve the diffusion equation in a two-dimensional domain. Part (a) illustrates the layer of interfacial
cells (thick lines) which separates the liquid and solid domains. Part (b) shows one hexagonal cell, its neighbours and the recipro-
cal lattice.

cerned with the estimation of the interface curva-
ture and the acquisition of thermodynamic data.
These procedures are detailed in Sections 2.3 and
2.4, respectively.

2.2. Solute diffusion and interface displacement

The diffusion of the solute elements in the solid
and liquid phases is described using an explicit
finite volume method formulated for the hexagonal
grid shown in Fig. 1. A solute balance is performed
in each cell K and for each solute element i [17]:

V
dwi

K

dt
� �6

I � 1

SJI,K
i (4)

with

V �
�3

2
a2 and S �

a

�3
(5)

where a is the cell size as defined in Fig. 1, V and
S are the surface and edge length of the cells,
respectively, dt is the time step, dwK

i is the vari-
ation of solute i in cell K and JI,K

i is the flux of
solute i between cells I and K. This solute flux is
calculated differently according to the state of the
two cells.

If cells I and K belong to the same phase n:

JI,K
i � Dni

wi
I�wi

K

a
n � α or l. (6)

If cell I is of interfacial type and the neighbour cell
K belongs to phase n(i.e. the face in between is
totally made of phase n on first approximation):

JI,K
i � Dni

wi
n,I∗�wi

K

�1
2

� gnI�a

n � α or l (7)

where wn,I∗i is the concentration of solute i at the
interface in phase n in cell I and gI

n is the fraction
of phase n in cell I. The factor multiplying a at
the denominator accounts for the position of the
interface in the interfacial cell2.

If both I and K are interfacial cells:

Ji
I,K � Di

αja
wi

α,I∗�wi
α,K∗

a
�

Di
l(1�jα)

wi
l,I∗�wi

l,K∗

a

(8)

2 If gI
n � 1/2 the interfacial concentration is taken in the

middle of cell I; if gI
n � 0, the interface is located on the face

between cells I and K and the distance is a/2; if gI
n � 1 the

interface is on the opposite face and the distance is 3a/2.
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where jαis an estimation of the fraction of solid
along the common edge to cells I and K. A value
for jα is obtained from the interface reconstruction
algorithm described in Section 2.3.

In the cells that are entirely solid or liquid, the
evolution of the concentrations is directly given by
Eq. (4). For interfacial cells, the variations of con-
centration obtained with (4) represent an average
over the liquid and solid phases. These quantities
are converted into a variation of solid fraction
using the lever rule approximation at the level of
each interfacial cell. Assuming ‘ thermodynamic
equilibrium’ at the interface (modified by
curvature), the actual temperature of the domain is
related to the interfacial concentrations according
to the following equation (the index of the interfa-
cial cell is omitted for the sake of clarity):

T � Tα
L(w1

l∗ � dw1
l∗,…,wn

l∗ � dwn
l∗)��Tr (9)

where Tα
L(w1,…,wn) is a function giving the liqui-

dus temperature for a given set of concentrations,
(wl∗

i � dwl∗
i ) is the new concentration of solute i

at the interface in the liquid and �Tr is the curva-
ture undercooling. The calculation of �Tr is
described in Section 2.3.

Assuming that the concentrations on the scale of
the interfacial cells are uniform, a lever rule can
be written for each solute element:

wi � dwi � (1 �

gα[ki
l,α(w1

l∗ � dw1
l∗,…,wn

l∗ � dwn
l∗)�1])

(wi
l∗ � dwi

l∗)

(10)

where the kl,α
i are the non-constant partition coef-

ficients and dwi the average variations of concen-
tration obtained with (4).

Eqs. (9) and (10) form a set of (n+1) equations,
the resolution of which provides the new volume
fraction of solid of the corresponding cell, gα, and
the n variations of the solute concentrations in the
liquid, dwl∗

i . A Newton–Raphson iterative algor-
ithm is used to solve this non-linear problem. Each
iteration consists of solving a linear system com-
posed of the following set of equations:

T � �Tr � Tα
L(w1

l∗,…,wn
l∗) � �

i

∂TL
α

∂wi
l∗dw

l∗
i (11)

dwi � wi
l∗(ki

l,α�1)dgα �

(1 � gα(ki
l,α�1))dwi

l∗ � gαwi
l∗�

j

∂ki
l,α

∂wj
l dwj

l∗

with i � 1,…,n.

(12)

Provided the cell size is small with respect to the
diffusion layer, this procedure is equivalent to
solve the interface solute balance expressed by Eq.
(2). A mathematical development showing this
equivalence is presented in the Appendix.

When gα in an interfacial cell becomes larger
than unity, the cell is attributed to the α phase. All
the liquid cells which are adjacent to this newly
solid cell become interfacial cells (with gα=0) so
that liquid and solid cells are never in direct con-
tact. Similarly, if gαfalls below zero in a cell (local
remelting), the cell becomes liquid and the solid
neighbours are transformed into interfacial cells
(with gα=1).

2.3. Interface curvature

The curvature of the interface is obtained
through the calculation of an additional field: the
signed distance to the interface, d. This quantity is
negative in the solid, positive in the liquid and null
on the interface. The calculation of d requires a
precise knowledge of the position of the interface.
The PLIC algorithm (piecewise linear interface
calculation), which was originally developed for
fluid flow problems [20], is first used to reconstruct
the interface from the solid fraction field. The
PLIC method is based on the assumption that the
interface is a straight line inside any given interfa-
cial cell. The position of the linear segment rep-
resenting the interface in a cell, K, is univocally
defined from the solid fraction in the cell, gK

α, and
the normal vector to the interface, nK.

The interface curvature is obtained through the
following algorithm:

1. Calculation of the PLIC segments. Each interfa-
cial cell K is ‘fi lled’ with a portion of solid, per-
pendicularly to nK (normal vector to the inter-
face obtained at previous time step or iteration)
and up to a value of gK

α (see [21] for details).
2. Calculation of δ. d is defined as the shortest dis-
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tance to the PLIC segments present in the calcu-
lation domain. This quantity is calculated at the
centres of the hexagonal cells. For a better com-
putation efficiency, the calculation of the dis-
tance field is limited to a narrow region around
the interface and the minimum of the distance
is searched only among the closest PLIC seg-
ments.

3. Calculation of the normal vector to the interface
in each interfacial cell K. First, in each triangle
of the reciprocal lattice (dashed lines of Fig. 1b),
a normal vector is calculated using the follow-
ing expression:

nKI �
(grad d)KI

|(grad d)KI|
(13)

where KI is an index standing for the triangle
of the reciprocal mesh. The gradient of d in tri-
angle KI ,(grad d)KI, is calculated using a linear
function for d, defined by the values obtained
in (2) at the corners of the triangle (which are
also cell centres). The vector nK in each interfa-
cial cell K is then obtained by averaging the nor-
mal vectors obtained in the six neighbouring tri-
angles:

nKI � �6

I � 1

nKI. (14)

4. Return to (1) if convergence is not reached
5. Calculation of the interface curvature. The fol-

lowing geometrical relationship is used:

� � div n. (15)

The latter expression is evaluated numerically
in each interfacial cell using the vectors nKI and
first order derivatives.

Fig. 2 illustrates the calculated distance field and
the reconstructed interface obtained with the PLIC
algorithm in a small region in the vicinity of the
interface. As can be seen, the PLIC segments of
adjacent interfacial cells are not necessarily con-
nected, although they almost match if the mesh size
is small with respect to the radius of curvature of
the interface.

The curvature undercooling is calculated with
the following expression:

�TK
r �

�K(s(q) � s�(q))
�sf

(16)

�sf is the volumetric entropy of melting and s(q)
is the surface tension, which is a function of the
angle q defining the orientation of the interface (
s�(q) is the second derivative with respect to q).
The surface tension is assumed to obey the follow-
ing q-dependence:

s(q) � s0h(q) � s0[1 � emcos(m(q�q0))] (17)

where s0 is an average value, em is the relative
variation (anisotropy), m is the symmetry order and
q0 defines the preferred growth direction of the
interface (i.e. the maxima of the interfacial energy
or the minima of the chemical potential).

2.4. Thermodynamic data

The thermodynamic data needed for the calcu-
lation are the liquidus temperature Tα

L and the par-
tition coefficients kα

i as a function of the liquid
compositions {wi

l�. For binary systems, this infor-
mation could be obtained easily from published
phase diagrams. However, this approach would be
difficult to follow for ternary and nearly impossible
for more complex systems. The use of thermodyn-
amic calculation tools, such as the Calphad
approach [22], clearly appears to be the appropriate
method for multi-component systems. Several stra-
tegies to couple Calphad calculations with the
PFT method have been implemented and compared
as follows.

2.4.1. Data tabulation
This approach is an extension of the method

used by X. Doré for the Al–Mg–Si system [21].
The liquidus temperatures and the partition coef-
ficients are calculated with Thermo-Calc [1] for
a fixed grid of concentrations and stored in a separ-
ate file before starting the microstructure calcu-
lation. The grid used to tabulate the thermodyn-
amic data has a dimension equal to the number of
solute elements. For example, it is a square grid
for a ternary system, a cubic grid for a quaternary
system and a ‘hypercubic grid’ for systems of
higher orders. During the microstructure calcu-
lation, multi-linear functions are used to interpolate
the data stored in the tabulation grid.

The possible stability of a secondary phase b is
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Fig. 2. PLIC segments, normal vectors and distance field (grey levels) used to describe the interface in the PFT model.

tested at each time step by a calculation of the
liquidus temperature of b, as a function of the aver-
age composition of the liquid at the interface,
(w̄l∗

1 ,…,w̄l∗
n ). The function TbL(w̄l∗

1 ,…,w̄l∗
n ) is esti-

mated with the same tabulation method as
Tα

L(w̄l∗
1 ,…,w̄l∗

n ). The calculation is stopped when
T � Tβ

L, which means that a eutectic or peritectic
phase has been reached.

Although this procedure may be too heavy in
complex multi-component systems (due to large
tabulation files), it proved to be a reasonable and
robust approach for systems up to four alloying
elements. Inaccuracies may occur for phase dia-
grams containing abrupt changes of the liquidus
slope or partition coefficients.

2.4.2. Direct coupling with Thermo-Calc
In this approach, the phase diagram software

Thermo-Calc is accessed for each interfacial cell
and at each time step while the microstructure
model is running (so-called direct coupling). In this
case the mathematical problem composed of Eqs.
(9) and (10) does not need to be solved. The new
temperature (corrected for the Gibbs–Thomson
effect), T � �Tr, and the average composition in
the mushy cell are input to Thermo-Calc, which
provides in feedback the solid fraction and the
composition of the liquid and solid phases at the

new thermodynamic equilibrium. The TQ-library
of Fortran subroutines of Thermo-Calc was
used to implement this coupling. Although general
and easy to implement, this approach is very com-
putationally intensive and exposed to robustness
problems.

2.4.3. Optimised direct coupling with Thermo-
Calc

This approach involves also a direct coupling
between Thermo-Calc and the microstructure
model via the TQ-interface. However, the number
of thermodynamic equilibrium calculations is lim-
ited in order to speed up the calculation. The
approach is based on the assumptions that the dif-
ferences between the interfacial concentrations
within the calculation domain can be approximated
by linear functions. More precisely, the following
linear dependencies of Tα

L and kα
i are assumed:

Tα
L(w1,…,wn) � Tα

L(w̄1
l∗,…,w̄n

l∗) (18)

� �n

i � 1

∂TL
α

∂wi

(wi�w̄i
l∗)

kα
i (w1,…,wn) � kα

i (w̄1
l∗,…,w̄n

l∗) (19)

� �n

i � 1

∂ki
α

∂wi

(wi�w̄i
l∗)
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where (w̄1
l∗,…,w̄n

l∗) is the set of mean concen-
trations in the liquid of all the interfacial cells at
the previous time step. At each time step, (n +1)
equilibrium calculations are performed in order to
update Tα

L, {ki
α� and their derivatives with respect

to each of the n solute elements. Additional calcu-
lations are needed to test the stability of the sec-
ondary phases.

3. Results and discussion

3.1. Validation tests

The objective of the first test was to estimate
the accuracy of the numerical procedure used to
calculate the interface curvature. For this test, a
sinus shape was imposed to the solid/liquid inter-
face so that the curvature calculated numerically
could be compared easily with an analytical sol-
ution. The solid fraction in each cell was calculated
analytically using the sinus equation of the inter-
face. After initialization, the curvature was esti-
mated with the procedure described in Section 2.3.
The evolutive problem was not solved in this case.

Fig. 3 shows a comparison of the curvature
obtained analytically and numerically for a wave-
length of about 27a and an amplitude of 6.25a. As
can be seen, excellent agreement is obtained
between the numerical results and the analytical
solution under the present conditions. Obviously,

Fig. 3. Curvature of a sinus-shaped interface obtained analyti-
cally and numerically using the distance field technique. The
insert shows the PLIC segments used to represent the position
of the interface in the hexagonal grid.

the accuracy depends on the mesh used to resolve
the sinus shape. However, it is satisfactory to
obtain such an accuracy, for a mesh which is rela-
tively coarse with respect to the smallest radius of
curvature of the interface (see insert in Fig. 3).

The second validation test was aimed at ver-
ifying the ability of the model to correctly solve
the mathematical problem composed of Eqs. (1)
and (2) in a mono-dimensional case. The objective
was to compare the diffusion field calculated with
the PFT method and a fixed grid, with that obtained
with a one-dimensional finite difference program
based on a front tracking approach and a Landau
transformation [17]. A model alloy with a liquidus
slope of �500K, a partition coefficient of 0.5 and
a nominal concentration of 0.05 was used for this
test. As an initial condition, the system was set at
thermodynamic equilibrium 1K under the liquidus
temperature, which corresponds to a solid fraction
of 7.7%. The solid/liquid interface was set at 0.77
µm from the left border of a 10 µm domain, and
the concentrations were initialised according to
equilibrium. The calculation was performed using
a heat extraction rate of �1.25×108 Wm�3

(equivalent to cooling rate of �50K s�1). The
domain was enmeshed with a grid of 100 cells
along the main dimension and two cells in height.
The small height permits to avoid interface insta-
bilities, which tend to arise due to constitutional
undercooling. Adiabatic boundary conditions were
applied on the lateral borders whereas periodic
conditions were used on the top and bottom bor-
ders. An evolutive grid of 50 nodes in both the
liquid and solid phases was used to run the one-
dimensional front tracking program [17]. The other
parameters of the PFT calculation are given in
Table 1 (calculation A).

Fig. 4 shows the concentration profiles obtained
with the two models at 10 different times. As can
be seen, the agreement is very good. The only dif-
ference that can be observed is for the concen-
tration jump at the interface; this is spread over
one mesh layer in the two-dimensional PFT model,
whereas there is a sharp transition for the one-
dimensional front tracking model. Small differ-
ences are also observed at the very end of solidifi-
cation when the size of the liquid region is of the
order of the cell dimension.
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Table 1
Parameters of the calculations

Calculation A B C D E

Alloy
System Model alloy Al–Cu Ni–Cu Al–Mg–Si Al–Mg–Si
Phase diagram ml=�500K From [25] From [7] From [25] From [25]

ka � 0.5
Nominal composition 0.05 0.02 0.408 wMg � 0.01 wMg � 0.01

wSi � 0.01 wSi � 0.01
Thermal conditions
Ḣ [Wm�3] �1.25×108 – – �3.9×107 �2.08×108

L [Jm�3] 109 – – 9.5×108 9.5×108

rcp [Jm�3K�1] 2.5×106 – – 2.6×106 2.6×106

Imposed �T [K] – 1 20.5 – –

Surface energy
s0 /�sf [Km] 1×10�7 5×10�7 2.5×10�7 2.5×10�7 2.5×10�7

e4 0 0.04 0.04 0.04 0.04

Diffusion
Dα[m2s�1] 10�13 5×10�10 10�13 Dα

Mg � 1.24 × 10�4e�130400/RT [26]
Dα

Si � 2.02 × 10�4e�136000/RT [26]
Dl[m2s-1] 10�11 5×10�9 10�9 Dl

Mg � 0.99 × 10�4e�71587/RT [27]
Dα

Si � 0.11 × 10�4e�49022/RT [28]
Solid seed
Number 1 1 1 20 4
Size [µm] 0.77 5 0.2 5 5
Position Left border Centre Centre Random Random
q0 0° 11° 11° Random Random

Space and time
Domain size [µm2] 10×0.2 400×400 9×9 500×433 500×433
Final time [s] 10 3 1.6×10�4 27.2 5.05
PFT
Number of cells 100×2 400×464 900×1038 400×400 400×400
CPU timea 3.5 min 29 h 36 h 70 h 112 h

PF
l [m] 0.5×10�6 1.0×10�8

mk [m1K�1s�1] 1.5×10�3 6.6×10�3/3.3×10�3

Number of cells 400×400 900×900
CPU timea 16 h 8 h

a Processor SGI R10000@250 MHz.

3.2. Comparison with PF simulations for binary
alloys

In order to assess the ability of the model to cor-
rectly predict the grain morphology in two dimen-
sional problems, systematic comparisons were per-
formed between the PFT method and a PF model
for binary alloys. The PF model used for these tests
is close to the formulation presented by Tiaden et

al. [8]. The evolution of the solid/liquid interface
is described through the following phase equation:

ḟ
mk

� ��	2f�
∂
∂x�hdh

dq
∂f
∂y� �

∂
∂y�hdh

dq
∂f
∂x�

�
f(1�f)(1�2f)

l2 � �

5f2(1�f)2

l
ml(wl�wl∗)

(20)
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Fig. 4. Comparison of concentration profiles obtained with the
two-dimensional PFT model and a one-dimensional sharp inter-
face model.

where f is the PF which varies smoothly from 0
in the liquid to 1 in the solid, mk is the interface
kinetic coefficient, � � s

0
/�Sf is the isotropic

Gibbs–Thomson coefficient, h is the anisotropy
function defined in Eq. (17), l is the interface
thickness, ml is the liquidus slope and wl∗ is the
equilibrium composition of the liquid given by the
phase diagram. The symbol wl denotes the local
composition of the liquid defined as:

wl �
w

1�f � kαf
. (21)

The evolution of the concentration, w, is obtained
with the following diffusion equation:

ẇ � 	·�D̃�	w �
(1�k)w

1�f � kαf
	f�� (22)

with

D̃ � Dα �
1�f

1�f � kαf
(Dl�Dα). (23)

Eqs. (20) and (22) were solved using an explicit
finite difference method and a regular square grid.

A case of isothermal solidification in an Al–2
wt%Cu alloy at a constant undercooling �T �
1K was selected for this test. A small solid seed

with a crystallographic orientation q0 � 11° was
placed at the centre of a 400 µm×400 µm domain

as an initial condition. The crystal orientation was
voluntarily misaligned with respect to the grid in
order to reveal potential grid anisotropy effects.
Periodic boundary conditions and a grid spacing of
1 µm were used both in PF and PFT simulations.
The other parameters are given in Table 1
(calculation B).

Fig. 5 shows the position of the interface and
concentration maps at two different times obtained
with the PFT and PF models. Although small dif-
ference can be noticed between the concentration
fields, the overall agreement is very good. No parti-
cular effects of grid anisotropy are observed,
neither in PFT nor in PF, since the dendrite arms
are correctly oriented at 11° with respect to the
horizontal and vertical axes, despite the use of hex-
agonal or square grids.

The difference between the PF and PFT results
can better be observed on Fig. 6, where concen-
tration profiles measured along a dendrite axis (see
line illustrated on Fig. 5) have been reported. The
continuous lines on Fig. 6 correspond to profiles
obtained with a mesh of 400×400 nodes (400×464
cells for PFT), whereas dashed lines are results
using coarser meshes (200×200 for PF and
200×232 for PFT). Some discrepancy is observed
between the interface position predicted by PF and
PFT, but, as expected, it decreases as the mesh is
refined. Calculations with even finer meshes would
permit to verify whether convergence between PF
and PFT is reached eventually. Although this
investigation could not be carried out due to
excessive computation times, it is expected that
small differences would ever remain due to the
attachment kinetic term, which is present in the PF
model and neglected in PFT. The kinetic undercoo-
ling that can be estimated from the dendrite tip
velocity is about 0.016 K for the present conditions
and parameters (mk � 1.5 × 10�3 ms�1K�1). This
undercooling corresponds to a reduction of 1.6%
in supersaturation. Although this effect is almost
negligible in the present case, it must be pointed
out that the real kinetic effect expected under such
solidification conditions is one or two order of
magnitudes lower. PF simulations performed with
an interface thickness higher than the physical
value are also known to introduce artificial non-
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Fig. 5. Concentration field calculated with the PFT (left) and PF (right) models for an Al–2 wt%Cu dendrite growing at a constant
undercooling of 1K. The domain dimensions are 400 µm×400 µm. The time is 1 s for the upper two figures and 3 s for the lower ones.

equilibrium effects [16], whose role is unclear in
the present test.

The difference between fine and coarse mesh
calculations appears to be higher in PF than in PFT
simulations (see Fig. 6). It is believed that conver-
gence of the results with respect to the space
discretization would be reached sooner in PFT than
in PF under the present conditions. However,
further comparisons would be needed to determine
the exact convergence behaviour. On the other

hand, the CPU time of PFT calculations is about
twice that of PF ones (see Table 1).

In the present calculation, the diffusion layer
ahead of the moving solid/liquid interface interacts
almost immediately with the diffusion layer com-
ing from the other side of the grain (since periodic
boundary conditions are used, it does not interact
directly with the boundary of the domain). This
situation is far from a free dendritic growth as
found under directional solidification or as



1920 A. Jacot, M. Rappaz / Acta Materialia 50 (2002) 1909–1926

Fig. 6. Concentration profiles along the primary dendrites
arms (white line in Fig. 5) obtained with the PTF and PF mod-
els, with different mesh resolutions.

described in analytical model of dendritic growth
[23]. It is, however, quite representative of typical
solidification conditions for grain-refined alloys,
where large grain densities and low undercooling
are generally the rule.

Nevertheless, it was also interesting to apply the
PFT model to a free dendritic growth problem,
with the objective to compare the solution with
other approaches such as marginal stability theory
[23]. The conditions used by Warren and Boet-
tinger in [7] for a free Ni–Cu dendrite growing at
a high supersaturation was considered for this test.
The PFT results were compared with marginal
stability theory and with a PF simulation perfor-
med with the original formulation of [7]. A calcu-
lation domain of 9 µm×9 µm and periodic bound-
ary conditions were used for this test. As in
previous simulations, the crystal orientation q0 was
set to 11° to avoid any symmetry relationship
between the dendrite and the mesh.

Prior to compare PFT and PF results, a sensi-
tivity analysis with respect to the important
numerical parameters was performed on both mod-
els. The mesh used for PFT simulations was refined
until the dependence of the results with respect to
the grid resolution was no longer significant. A
mesh of 900×1038 hexagonal cells was finally
retained for the comparison. PF results proved to
be less mesh-dependent, but the growth rate and
the tip radius of the dendrite were strongly influ-

enced by the choice of the kinetic coefficient and
to some extent by the interface thickness. Since
attachment kinetic is neglected in PFT, it was tried
to perform PF calculations using a kinetic coef-
ficient as high as possible. Unfortunately, PF calcu-
lations at high kinetic coefficient are difficult to
perform for numerical reasons. The parameters
finally selected for the comparison are
mk=6.6×10�3 m�1K�1s�1 and l=10 nm [see also
Table 1(calculation C)].

Fig. 7 shows the results obtained with the PFT
and PF models for a time after nucleation of
1.6×10�4 s. As can be seen, the PF dendrite grows
at lower velocity and with a coarser tip as com-
pared with the PFT dendrite. This difference is cer-
tainly due to non-equilibrium effects, which are
considered in the PF model only. The kinetic
undercooling at the dendrite tip present in PF
simulation was estimated to 3–4K (deduced from
the tip velocity at steady state). Compared to the
20K solutal undercooling, this term has certainly
an important influence on the growth morphology
and could explain the differences observed. The PF
model also accounts for solute trapping, which
tends to increase the growth rate. This effect seems
to be smaller than the attachment kinetics, since
the predicted growth rate is smaller than in PFT.

The PF and PFT results were also compared to
the marginal stability theory [23]. The steady-state
growth rates obtained with the three approaches are
reported in Table 2 and the contours of the dendrite
tips are presented on Fig. 8. As expected, in pres-
ence of surface energy anisotropy, both the PFT
and PF models predict a sharper tip and a higher
growth velocity than the marginal stability theory.
Due to attachment kinetics, the PF model predicts
a coarser tip radius and a lower growth rate than
PFT. A PF calculation performed at lower kinetic
coefficient (mk=3.3×10�3 m�1K�1s�1) lead to a
growth rate which is even lower than marginal
stability (see Table 2). This confirms the impor-
tance of non-equilibrium effects in the PF simul-
ation.

It appears from this investigation that the pres-
ence of kinetic undercooling and solute trapping in
the PF model makes detailed comparison between
PF and PFT difficult to perform. Similarly, com-
parisons between marginal stability theory and
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Fig. 7. Ni–Cu dendrite computed with the PFT (left) and PF (right) models. The time is 1.6×10�4 s after nucleation. The mesh
resolution is 900×1038 for the PFT, and 900×900 for the PF.

Table 2
Steady state growth rate of a free dendrite predicted by different
models for a constant 20K undercooling and a Ni–0.408Cu
alloy

Marginal stability PF (WB model) PFT
theory

2.19 cm/s 2.23 cm/s 2.91 cm/s
(mk=6.6×10�3

ms�1K�1)
1.09 cm/s (3×10�3

ms�1K�1)

Fig. 8. Shape of the dendrite tip predicted with PFT, PF and
marginal stability theory.

numerical simulation is also difficult, given that
surface tension anisotropy is not considered in the
theoretical model. In spite of these difficulties, this
investigation permitted to verify that the growth
kinetics and the dendrite shape predicted with the
PFT is in reasonable agreement with other
approaches. Furthermore, the differences could
always be explained qualitatively by considering
the assumptions made in each model.

Comparisons with solvability theory [24], which
accounts for surface tension anisotropy, would per-
mit to better assess the accuracy of the PFT model.
However, it was thought that the model presented
in this contribution was sufficiently accurate for the
description of microstructure formation in complex
systems, especially considering the other
unknowns and uncertainties.

3.3. Application to Al–Mg–Si

The model was then used to predict microstruc-
ture formation in an Al–1 wt%Mg–1 wt%Si alloy
under various cooling rate and inoculation con-
ditions. A calculation domain containing several
grains was used in order to investigate the effect of
their interaction on their morphology and growth
kinetics. Two calculations, D and E, with different
grain densities [92 grains/mm2 (D) and 18
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grains/mm2 (E)] and different heat extraction rates
(Ḣ � �39MWm�3(D) and Ḣ � �208MWm�3

(E), equivalent to cooling rates before solidification
of –15 and –80Ks–1, respectively) were performed.
The calculations were started at the liquidus tem-
perature and stopped when a monovariant line was
reached. The thermodynamic data were obtained
from the database of Ansara et al. [25]. Solid seeds
were nucleated randomly in the 500 µm×433 µm
calculation domain according to the selected grain
density. The crystal orientation, q0, of each solid
seed was chosen randomly and propagated to
interfacial cells during growth. The other con-
ditions of the calculations are listed in Table 1.

Fig. 9 illustrates the results of calculations D and
E at different stages during solidification. Fig.
9(a)–(d) show the grain morphology and the con-
centration field of magnesium in the liquid,
whereas Fig. 9(e) and (f) present the grain structure
and the distribution of Mg in the solid phase. The
latter figures correspond to the end of the calcu-
lation, when the phase Mg2Si could precipitate.

In the case of low cooling rate and high grain
density (calculation D, left of Fig. 9), it can be seen
that the gradient of Mg concentration in the liquid
drops very rapidly due to the overlap of the dif-
fusion layers around the grains. As a result, the
grains keep their globular morphology throughout
the entire solidification process. In the case of high
cooling rate and low grain density (calculation E,
right of Fig. 9), interaction between the diffusion
layers occurs later (except for liquid regions separ-
ating two close neighbour grains) and larger vari-
ations of Mg concentration are observed in the
liquid. This situation leads to a destabilization of
the solid–liquid interface and a dendritic grain
morphology. A few dendrite tips can grow freely
in the liquid without much influence from other
growing tips. However, the diffusion fields start to
overlap before fully developed dendrites can form.
Some thermal noise was intentionally added in this
calculation to enhance the formation of secondary
arms. It was found however that the grain mor-
phology is not much sensitive to noise. It was con-
cluded that the overlap of the diffusion layers is
responsible for the scarcity of secondary arms.

The solidification paths obtained for calculations
D and E are presented on the ternary Al–Mg–Si

phase diagram of Fig. 10. Although, the calculated
paths do not differ much between the two cases,
the influence of the density and morphology of the
grains is clearly visible. Both calculations ended
when the solidification path hit the Al–Mg2Si-
liquid monovariant line, i.e. when Mg2Si particles
could precipitate. However, in more complex sys-
tems, where the stability range of the secondary
phases is smaller or for some critical alloy compo-
sitions, such a difference in the solidification con-
ditions could lead to different secondary phases.
Larger differences would also be expected between
globular and fully dendritic microstructures.

The calculations presented above were repeated
using the different strategies presented in Section
2.4 to couple the PFT model with Thermo-Calc.
As anticipated, no significant differences were
observed between the results obtained with the
three strategies, except for the computation time!
This indicates that the resolution used to tabulate
the thermodynamic data is sufficient and that the
assumption of local linear dependencies used to
optimise the direct coupling is valid under the
present conditions. The computation times reported
in Table 3 indicate that a direct coupling is not
more computationally intensive than a tabulation
technique, provided a linearization procedure is
used. The direct coupling without linearization
leads to a substantial overhead in computation
time. The later is however strongly influenced by
the proportion of interfacial cells (higher in globu-
lar microstructure than in the dendritic one). Some
robustness problems were experienced with the
non-optimised direct coupling, due to sporadic
numerical oscillations.

4. Conclusions

A new numerical model for the description of
microstructure formation during solidification of
multi-component systems has been developed. The
model is based on an original technique to describe
the evolution of interfaces that are governed by sol-
ute diffusion and Gibbs–Thomson effect. The
model was coupled to a thermodynamic database
using different strategies, in particular a compu-
tationally efficient direct coupling with the
Thermo-Calc TQ interface.
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Fig. 9. Evolution of the microstructure and Mg concentration field during the formation of the primary phase in Al–1 wt%Mg–
1wt%Si for two thermal and nucleation conditions (calculations D and E).
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Fig. 10. Projection of the liquidus surface of the Al–Mg–Si
alloy near the Al-rich corner and solidification paths obtained
with the PFT model for two sets of nucleation and cooling con-
ditions.

Table 3
CPU time of PFT calculations as a function of the method used
to obtain phase diagram data (SGI R10000@250 MHz)

Tabulated Direct Optimised direct
data (h) coupling with coupling with

Thermo- Thermo-Calc (h)
Calc (h)

Globular 100 500a 70
Globulo- 107 200 112
dendritic

a Extrapolated.

The results obtained with the model were vali-
dated against other approaches, such as marginal
stability theory, a one-dimensional front-tracking
method, and two-dimensional PF models for binary
alloys. Good agreement was found for all the com-
parisons performed. Some discrepancy was
observed between PF and PFT calculations for free
dendritic growth at high undercooling. However,
the differences could be explained qualitatively by
considering the influence of attachment kinetics
and solute trapping, which is neglected in PFT and
certainly overestimated in the PF model. Further-

more, excellent agreement is obtained between
these two approaches at low undercooling, where
the attachment kinetics contribution is much small-
er.

PF simulations using realistic kinetic coef-
ficients are generally difficult to perform. The
absence of non-equilibrium effects in the PFT
model is therefore a clear advantage to calculate
microstructures in metallic systems under normal
solidification conditions. On the other hand, the
PFT method is more difficult to implement numeri-
cally due to the complex geometrical algorithm
used to reconstruct the interface from the solid
fraction field. It was also experienced that PFT
simulations are about two to four times more com-
putationally intensive than the PF ones for an equi-
valent number of nodes. However, the number of
nodes needed to achieve a certain accuracy is not
necessarily the same. A systematic investigation of
the computational efficiency of each model was
beyond the scope of this contribution. The first
objective was to show the validity of this approach
and, in this respect, the PFT method is believed
to be an interesting alternative to other models of
microstructure formation.

The PFT model was used successfully to
describe various types of microstructures such as
globular, globulo-dendritic and dendritic grains in
a ternary aluminium alloy. In the case of alu-
minium alloys produced by direct chill semi-con-
tinuous casting, the microstructure has essentially
a globular or globular-dendritic morphology with
a very weak anisotropy of the interfacial energy.
The present model provides an interesting tool for
predicting the influence of alloy composition, cast-
ing conditions and inoculation on the resulting
microstructure, microsegregation profiles, distri-
bution of interdendritic phases. Although limited at
present to primary phase solidification, it is being
extended to include precipitation of various phases
once a monovariant line is reached and homogen-
ization.
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Appendix

Let us consider a mushy cell composed of a solid
sub-domain, 
α, and of a liquid sub-domain, 
l,
separated by an interface, �α / l (see Fig. A1).
Assuming a constant specific mass, the solute bal-
ance for element i over the cell domain 
 �

α�
l can be expressed by:

�
�α

(Ji
α·n)d� � �

�
l

(Ji
l·n)d� � �

d
dt�




wid
 (A1)

where �α and �l are the external boundaries of

α and 
l, Jα

i and Jl
i are the solute fluxes along

�α and �l, respectively, n is the unit vector normal
to the boundaries, pointing outward of the
domain. Introducing

Fig. A1 Mushy cell.

�α
i � � �

�α

(Ji
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i � (A2)
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Eq. (A1) can be rewritten as:

�α
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d
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d
dt �



l
(t)
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id
 (A3)

where 
α(t) and 
l(t) express the time-dependence
of the sub-domains. Developing (A3) yields:

�α
i � �l

i � �

α(t)

∂wi
α

∂t
d


� �
�α/l

(wi
αv·n)d� � �



l
(t)

∂wi
l

∂t
d
 (A4)

� �
�α/l

(wi
lv·n)d�

where v is the velocity of the interface and n along
�α / l is defined as pointing toward the liquid.

Assuming that the cell is small enough so that
each quantity can be represented by a single value,
we get:

�α
i � �l

i � gαV
∂wi

α

∂t
� (1�gα)V

∂wi
l

∂t
(A5)

� v·n (wi
a�wi

l)Sα/l

where Sα / lis the surface area of �α / l, V is the vol-
ume of the cell and gα is the volume fraction of
solid in the cell.

On the other hand, the PFT method is based on
the following formulation:

�i
α � �i

l � V
dwi

dt
� V

d
dt

(gαwi
α � (1�gα)wi

l) �

V�(wi
α�wi

l)
∂gα

∂t
� gα

∂wi
α

∂t
� (1�gα)

∂wi
l

∂t �. (A6)
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Considering also that

v·n Sα/l � V
∂gα

∂t
(A7)

the equivalence between (A5) and (A6) is directly
obtained. This justifies the formulation used in
the model.

In order to establish the link between the PFT
formulation and Eq. (2), we have to consider the
two terms on the left hand side of Eq. (A5). When
the size of the mushy cell tends toward zero, the
continuity of fluxes in the α-phase imposes that:

�
�α

(Ji
α·n)d� � �

�α/l

(Ji
α·n)d� � 0. (A8)

Therefore

�α
i � (Ji

α·n) Sα/l. (A9)

Similarly, in the liquid phase:

�
�

l

(Ji
l·n)d�� �

�α/l

(Ji
l·n)d� � 0 (A10)

and

�l
i � �Jl

i·n Sα/l. (A11)

Inserting (A9) and (A11) into (A5) yields:

(Ji
α�Ji

l)·n Sα/l � V�gα
∂wi

α

∂t
� (1�gα)

∂wi
l

∂t �
� (wi

α�wi
l)v·n Sα/l. (A12)

For a vanishing cell size, V /Sα / l→0 and (A12)
becomes:

(Ji
a�Ji

l)·n � (wi
l�wi

α)v·n (A13)

which is equivalent to Eq. (2) if Fick’ s first law is
used to formulate the fluxes.
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