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Abstract—A new algorithm based upon a 2-dimensional Cellular Automaton (CA) technique is proposed
for the simulation of dendritic grain formation during solidification. The CA model takes into account the
heterogeneous nucleation, the growth kinetics and the preferential growth directions of the dendrites. This
new CA algorithm, which applies to non-uniform temperature situations, is fully coupled to an enthalpy-
based Finite Element (FE) heat flow calculation. At each time-step, the temperature at the cell locations
is interpolated from those at the FE nodal points in order to calculate the nucleation-growth of grains.
The latent heat released by the cells and calculated using a Scheil-type approximation is fed back into
the FE nodal points. The coupled CA-FE model is applied to two solidification experiments, the Bridgman
growth of an organic alloy and the one-dimensional solidification of an Al-7wt% Si alloy. In the first
case, the predicted boundaries between grains are in good agreement with experiment, providing the CA
cell size is of the order of the dendrite spacing. For the second experiment, the quality of the coupled
CA-FE model is assessed based upon grain structures and cooling curves. The columnar-to-equiaxed
transition and the occurrence of a recalescence are shown to be in good agreement with the model.

Résumé—Un nouvel algorithme d’Automate Cellulaire (AC) bi-dimensionnel est proposé pour simuler la
formation de grains dendritiques lors de la solidification. Le modéle tient compte de la germination
hétérogéne, de la cinétique de croissance et des directions de croissance préférentielles des dendrites.
L’algorithme, applicable 4 des situations de thermique non-uniforme, est couplé 4 des calculs d’éléments
finis (EF) basés sur une méthode enthalpique. A chaque pas de temps, la température des cellules est
interpolée a partir de celles des noeuds du maillage d’EF afin de calculer la germination-croissance des
grains. La chaleur latente, libérée par les cellules et calculée a I'aide de Papproximation de Scheil, est
rétrocédée aux noeuds du maillage I’EF. Le modéle AC-EF est appliqué au cas de deux expériences de
solidification: la croissance dirigée dans un dispositif de type Bridgman d’un alliage organique et la
solidification unidirectionnelle d’un alliage Al-Si7%pds. Dans le premier cas, les frontiéres prédites entre
les grains présentent un bon accord avec 'expérience lorsque la taille des cellules approche 'espacement
interdendritique. Pour la seconde expérience, la qualité des prédictions du modéle AC-EF est testée pour
la structure des grains et les courbes de refroidissement. Il est montré que la transition colonnaire-équiaxe
et 'existence d’une recalescence sont correctement prédites par le modéle.

Zusammenfassung—Ein neuer 2-dimensionaler Zellautomatenalgorithmus (ZA) wird vorgeschlagen,
welcher die Entstehung dendtrischer Kérner wihrend der Estarrung zu simulieren erlaubt. Das Modell
beriicksichtigt die heterogene Keimbildung, die Wachstumskinetik und die bevorzugten Wachstumsrich-
tungen der Dendriten. Der Algorithmus, der auf thermisch ungleichférmige Problemstellungen angewandt
werden kann, ist an eine auf der Enthalpie beruhenden Finite-Elemente-Methode (FE) gebunden. Bei
jedem Zeitschritt wird die Zelltemperatur durch Interpolation der Temperaturen der Netzwerkknoten der
FE bestimmt, um Keimbildung und Wachstum der Korner zu berechnen. Die von den Zellen freigesetzte
latente Wirme, die mit einer Scheil-Niherung berechnet wird, diffundiert zu den Netzwerkknoten zuriick.
Das FE-ZA-Modell wird auf zwei Erstarrungsexperimente angewandt, die kontrollierte Erstarrung einer
organischen Legierung in einem Bridgmanofen und die gerichtete Erstarrung einer Al-7gew%
Si-Legierung. Im ersteren Fall stimmen die vorhergesagten Korngrenzen gut mit dem Experiment {iberein,
wenn sich die Zellgrossen im Bereich der Dendritenabstinde befinden. Im zweiten Fall dienen Kornstruk-
tur und Abkiihikurven der Bewertung des FE-ZA Modells. Der experimentell beobachtete Ubergang von
sdulenférmigem zu gleichachsigem Wachstum und das Auftreten einer Rekaleszenz werden von dem
Modell gut reproduziert.

INTRODUCTION processes [1-6] have been developed recently by

several authors. Adapting a Monte Carlo (MC) pro-

Probabilistic models of solidification for the predic- cedure previously developed by Anderson et al. [7] for
tion of dendritic grain structures in solidification recrystallisation and grain growth to the case of
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solidification, Brown and Spittle [1, 2] and Ohsasa [3]
have been able to compute micrographic cross
sections in castings which reproduced the grain com-
petition occurring in the columnar zone and the
columnar-to-equiaxed transition (CET). Based upon
a Potts model, such MC methods minimise an inter-
facial energy of unlike sites, i.e. of sites belonging to
the solid-liquid interface for solidification or to the
different grain boundaries for recrystallisation [8, 9].
However, they do not consider the specific aspects
associated with dendritic solidification.

In cubic metals, it is well known that the selected
grains in the columnar zone are those which have
their {100) directions (i.e. the main growth direction
of the dendrite trunks) most closely aligned with the
heat flow direction [10, 11]. For this reason, the
energy levels of the grains defined in the MC models
should be variable and correlated with the growth
anisotropy of the dendritic pattern within each grain.
The “anisotropy intensity factor” introduced by Zhu
and Smith [4, 5], in order to treat the competition of
columnar grains, considers the growth rates of the
grains in two directions, parallel and perpendicular to
the heat flow direction. However, this parameter
must be fitted to experimental results to obtain
realistic grain structures and it does not relate to
crystallographic orientations. Furthermore, no quan-
titative comparison with experimental observations
has been made in order to estimate this parameter
and to validate calculated grain boundaries.

Another drawback of the MC solidification models
is that they do not explicitly integrate the growth
kinetics of the solid-liquid interface, i.e. the relation-
ship between the growth rate of the dendrite tips and
their undercooling [12]. Furthermore, the correspon-
dence between the MC time step used in the calcu-
lations and real time is not clear, since during each
step N sites are randomly chosen among the N sites
of the MC network (i.e. not all the sites located at the
solid-liquid interface are investigated). To summar-
ise, the grain growth mechanisms introduced in these
solidification models are not physically sound.
Similar limitations exist in the slightly different
approach recently proposed by Yang ez al. [6].

Based upon a Cellular Automaton (CA) technique,
the approach developed by Rappaz and Gandin [13]
for the prediction of the grain structure in castings
specifically considers the crystallographic anisotropy
of the grains and the growth kinetics of the dendrite
tips. Assuming a given and uniform temperature field
within the specimen, such model can predict quanti-
tatively the effects of the cooling rate and solute
concentration on the final grain structure. Charbon
and Rappaz [14] have adopted a similar approach for
the modelling of equiaxed grain structures in eutectic
alloys. However, the major limitation of both the
dendritic and eutectic models is the assumption of a
uniform temperature situation (i.e. low Biot number).
Rappaz et al. [15] have extended the probabilistic
model of eutectic grain growth to a non-uniform
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temperature field by imposing a constant thermal
gradient and cooling rate and neglecting the latent
heat released by the grains.

The aim of the present contribution is to present a
new approach which couples a finite element (FE)
heat flow calculation with a 2-dimensional cellular
automaton model (CA) describing the formation of
grains in castings. For this end, the nucleation and
growth algorithms previously described in Ref. [13]
are adapted to non-uniform temperature situations
and the latent heat liberated by the grains, more
precisely by the cells belonging to the grains, is fed
back into the macroscopic model. Prior to applying
such a CA-FE model to the study of the CET
occurring in a one-dimensional aluminium-silicon
alloy, the grain competition which has been observed
in an organic alloy by Esaka [16,17] is used to
support the CA growth algorithm.

EXPERIMENTAL

Grain selection in the columnar zone

As shown by Esaka [16, 17], in situ observations of
the dendritic solidification of transparent organic
analogues is a very powerful tool for the study of the
selection occurring among the grains in the columnar
zone. Because solidification occurs between two glass
sheets whose separation is small, only one dendrite
layer grows in the thickness of the solidifying volume
and can be easily observed. This point is of great
importance if a comparative analysis is to be done
with a two-dimensional model of grain structure
formation.

The three video sequences of Fig. 1 show the
selection of columnar grains in an organic binary
alloy solidified under one-dimensional Bridgman
conditions as observed under a microscope by Esaka
[17]. The first sequence at the bottom has been
isolated from the latter development stage of the
microstructure in order to visualise the dendrite tip
position during growth, whereas the two subsequent
video sequences have been assembled to clearly reveal
the grain boundaries. As can be seen from the (100>
dendrite trunk orientations, three grains are present
at the beginning (bottom of Fig. 1): the two external
grains have their {100) preferential growth direction
almost perpendicular to the horizontal isotherms
whereas the grain in the centre has its {100)
crystallographic orientation at about 30° from the
temperature gradient (vertical direction).

It is interesting to observe that for a constant
thermal gradient and velocity of the liquidus
isotherm, the two grain boundaries in Fig. 1 are
straight lines. For the two grains on the left of Fig. 1
which have converging (100> dendrite trunk direc-
tions, the grain boundary coincides with the dendrite
trunk of the left-hand grain for which the {100)
crystallographic direction is almost aligned with the
temperature gradient. This observation can be easily
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Fig. 1. Competition between three columnar grains of a
succinonitrile-1.3wt% acetone alloy solidified under a con-
stant thermal gradient, G = 1900 K/m, and a velocity of the
liquidus isotherm, v, =86-10"*m/s (picture assembled
from three sequences of the video tape recorded by Esaka

[16)).

explained: for a given velocity of the liquidus
isotherm, v, dendrites having a misorientation, 0,
with respect to the temperature gradient grow with a
higher velocity, v,=wv,/cos(f), in order to keep
stationary growth conditions. Since the growth rate
of the dendrite tips is an increasing function of the
undercooling [12], the dendrite tips of the misaligned
central grain in Fig. 1 have a higher growth rate and
thus a higher undercooling. In a given temperature
gradient, this means that they lie slightly behind the
dendrite tips of the well-aligned grain at left of Fig. 1
and that their growth is stopped by the solute field of
the secondary arms of these well-aligned dendrites.

For two neighbouring grains having (100) diverg-
ing orientations (the situation at the right of Fig. 1),
an open region of liquid continuously forms in-be-
tween the dendrite trunks. Secondary arms can there-
fore grow in this region and, by branching
mechanisms of tertiary arms, lead to the formation of
new primary dendrite trunks. As can be seen in Fig. 1,
new trunks form on the sides of both grains but with
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quite different spacings. It appears that the primary
spacing of the central grain, 4,, is larger than that of
the right-hand grain, A,.. This result does not follow
the G~Y2.p~"* dependence predicted by simple
models [18] since, for a fixed temperature gradient, G,
the velocity, v, of the dendrites within the central
grain is larger than that of the dendrites in the
right-hand grain. The same result was discovered by
Grugel and Zhou [19].

In Fig. 1 it also appears that the variations of
primary trunk spacing within each grain are directly
associated with the chaotic behaviour of the branch-
ing mechanisms at grain boundaries (growth compe-
tition between secondary and tertiary arms of the two
grains [17]). Nevertheless, new trunks within each
grain form at the grain boundaries with average
spatial frequencies, f, and f;. The angle, 8, of the
grain boundary with respect to the temperature gradi-
ent can thus be calculated using these average values

sin(@g — 0,) = A i (1)

where 4, and 6, are the angles characterising the
dendrite trunk directions for the central and right-
hand side grains, respectively. If £, is the ratio of the
two frequencies (i.e. the ratio at which new trunks
appear at the grain boundary, f, =f./f;), then

sin(0, — 0g) = 4,."f. and

%-fc,-sin 0, + sin 6,
Ir . (2)

2k ccos 8, + cos 0,
/11r

tan 0y =

Considering that four new dendritic trunks appear in
Fig. 1 in the central grain while ten form in the
right-hand grain (i.e. f, = 4 = 10), the application of
equation (2) to this case (6,=30° 6,=11°,
A, =310 um and ,, = 177 um) leads to a value of 0y
equal to 22°. This value is to be compared with the
experimentally observed grain boundary angle
8 = 19°. It must be emphasised that equation (2) is
only a geometrical relationship deduced from exper-
imental observation. It cannot be used as a predictive
tool to calculate the boundary between two grains of
diverging orientations since neither the primary trunk
spacings nor the frequency of the appearance of these
trunks at the boundary can be estimated from simple
analytical models.

In summary, the growth of a single grain can be
seen as the development of a single dendritic network
with given (100} directions corresponding to pri-
mary, secondary and tertiary arms. Neglecting the
“incubation time” which is necessary for a secondary
or tertiary dendrite arm to escape from its neighbours
and to become a free growing dendrite tip, each part
of this dendritic network develops with the same
growth kinetics law relating the local growth rate to
the local undercooling. In a uniform temperature
gradient, the resulting shape of the grain will be a
square [13] but in a given temperature gradient,
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Fig. 2. Grain structure in a longitudinal section of a
Al-Twt% Si alloy cylinder unidirectionally solidified over a
copper chill plate.

the local undercooling, and thus the local growth
rate, varies. Accordingly, in a Bridgman-type exper-
iment such as that used for the solidification of
organic analogues (Fig. 1), the secondary and tertiary
arms which are further away from the liquidus
isotherm grow faster and determine the competition
which occurs at the boundaries of two grains having
diverging (100} orientations. The crystallographic
orientations of the grains being defined, the grain
selection then appears as a fully deterministic process
which is only governed by the local solidification
conditions and by the growth kinetics law of the
alloy.

Columnar -to-equiaxed transition

The Al-7wt% Si ingot shown in Fig. 2 was soli-
dified under well-controlled unidirectional solidifica-
tion conditions using the experimental arrangement
described by Ampuero et al. [20, 21]. In order to
eliminate any convection associated with pouring, the

1The only fluid motion which can occur in this experiment
is that associated with shrinkage and with the
Marangoni effect. The first contribution produces a
small fluid motion opposed to the displacement of the
isotherms whereas the surface-driven flow is negligible
considering the very small lateral thermal gradient at the
free surface.
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liquid metal and mould were initially maintained at a
constant temperature (superheat of 139°C). The tem-
perature difference between the seven Pt-Pt10%Rh
thermocouples (see locations in Fig. 2) was lower
than 1°C before a water-cooled copper chill was
applied to the bottom of the mould. In order to
obtain one-dimensional cooling conditions, the lat-
eral walls and top of the mould were made out of a
highly insulating material (Promat™) whereas the
bottom part was a thin plate of aluminium nitride
having a large thermal conductivity. The heat flow
leaving the ingot during solidification was determined
by an inverse method calculation of the temperatures
measured at precise locations in the copper chill [22].
It should also be pointed out that natural and solute
convection is minimised with this experimental
configuration using this alloy.

As is well known in dendritic solidification
[10, 11, 18], the structure of conventionally cast ingots
often consists of three distinct zones which can be
clearly seen in Fig. 2: fine grains (outer equiaxed
region) near the bottom mould surface, long colum-
nar grains whose growth starts from the outer
equiaxed region and finally an equiaxed region in the
upper part of the casting. The transition from the
columnar to the equiaxed zones (CET) has been the
subject of many investigations. Winegard and
Chalmers [23] first proposed that the dendritic
equiaxed zone is a result of heterogeneous nucleation
of grains in a large constitutionally undercooled
region. But their theory was unable to explain the
effect of the pouring temperature on the final grain
size and the percentage of columnar and equiaxed
zones. For that reason, Chalmers [24] proposed that,
for a low pouring superheat, new crystals may rapidly
form near the mould wall and move in the bulk of the
liquid by convection motion. This so-called “big
bang” nucleation theory and heterogeneous nucle-

.ation in the bulk can explain many of the solidifica-

tion grain structures. Another factor intervening in
the formation of equiaxed grains is the mechanical
breaking [25] and remelting [26] of dendrite arms by
convection. Finally, Southin [27] has shown that
grains may also form at the top surface of an ingot
which is open to atmosphere, thus defining a
“fourth” zone in castings. If convection exists, these
latter grains may be drawn into the liquid and
contribute to the equiaxed region.

With the present experiment approximating con-
vection-free one-dimensional heat flow conditionst
most of the mechanisms of equiaxed grain formation
mentioned before can be legitimately ruled out, in
particular those proposed by Johnston et al. [25] and
Jackson et al. [26]. Additionally, starting with a liquid
metal which is insulated from the atmosphere by a
closed mould having the same initial temperature, the
“fourth” zone of castings [27] and the big bang
nucleation [24] are also eliminated. Therefore, this
leaves the heterogeneous nucleation in an under-
cooled liquid ahead of the growing columnar front
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Fig. 3. Schematic diagram of a directional solidification experiment showing the competition among

columnar grains, the heterogeneous nucleation and growth of equiaxed grains ahead of the columnar

grains and the extension of a dendritic grain after passing a re-entrant corner of the mould. A typical

triangular (FE) mesh (a) and the regular network of cells used in the CA model (b) are also shown together

with the boundaries of the columnar grains (heavy lines in b) which would result from the CA-FE

calculations. The three interpolation factors, ¢, @,;, ¢, from FE nodes i, j, k to CA cell v are
schematically described as arrows in (c).

[23] as the only possible mechanism for the CET seen
in Fig. 2.

Finally, the well-controlled solidification con-
ditions achieved with the experimental arrangement
described above allows the results to be used with a
high degree of accuracy for validating the ability of
the model to simulate both grain growth formation
and the cooling curves.

MODEL

Introduction

Figure 3(a) summarises the situation already de-
scribed in the previous section for the formation of

dendritic grains in a smail region of a casting of non-
uniform cross-section (presence of a re-entrant
corner). If the liquidus isotherm, T}, moves in a
thermal gradient, G, at a velocity, v, , the undercooled
region ahead of the well-aligned columnar dendrite
tips, Az,, is given by the undercooling, AT, = AT (v, ),
divided by G. As explained above, the dendrite tip
velocity, v,, of the misaligned grain at the centre is
larger and so are the undercooling, AT,= AT (1),
and the undercooled region, Az,. Since an under-
cooled region of liquid is available between the
liquidus isotherm and the dendrite tips, equiaxed
grains can nucleate in this region [23, 28]. Addition-
ally, dendrite arms can extend in open regions of
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liquid such as that near to the re-entrant corner on
the left of Fig. 3(a) or in-between two grains of
diverging <100} orientations.

A finite element (FE) enmeshment which can be
used for a heat flow calculation in the casting
[Fig. 3(a)] and whose typical size is well adapted to
the temperature gradients (i.e. macroscopic scale) is
drawn superimposed to the schematic dendritic net-
work. A regular network of square cells with a much
finer scale (typically of the order of the secondary
dendrite arm spacing) has been drawn in Fig. 3(b) for
the modelling of the grain structure formation with
the cellular automaton (CA) [13]. The aim of this is
to combine the FE and CA calculations in a single
model in order to predict simultaneously the micro-
structure development as a function of the thermal
field and the influence of the latent heat release of the
grains on the calculated thermal history (e.g. local
undercooling, recalescence). For this purpose, inter-
polation coefficients are defined between nodal points
of the FE mesh and CA cells as illustrated in Fig. 3(c).
The CA cell, v, with its centre in the finite element I,
has non-zero interpolation coefficients, ¢,;, ¢,,, and
¢, with the FE nodes i, j, k, respectively.t As ex-
plained in more detail below, these interpolation
coefficients allow the determination of the tempera-
ture at the cell locations using those known at the FE
nodal points [LHS arrow in Fig. 3(a, b)}. The same
coefficients are used to sum up, at the nodal points,
the latent heat released by nucleation, growth and the
thickening of the dendritic microstructure as calcu-
lated at the scale of the CA cells [RHS arrow in
Fig. 3(a, b)].

Nucleation

As explained in Refs [13] and [29], heterogeneous
nucleation occurring in the bulk liquid and at the
surface of the casting is described by two distri-
butions of nucleation sites which become active as
undercooling increases. In the present case, Gaussian
distributions have been used and thus the density of
grains, n, (n,), formed at any undercooling, AT, in the
bulk (surface) of the casting is given by

AT d
Ny (AT) = L [.d(_A”T_,)] ( )-d(AT’) 3)

where the entity in between the square brackets is the
corresponding Gaussian nucleation site distribution.

Modelling of heterogeneous nucleation with the
CA is straightforward. For the bulk of the liquid (i.e.
for cells which do not touch the surface of the
casting), undercoolings randomly generated with a
Gaussian distribution are attributed to randomly
chosen cells. The corresponding undercoolings,
ATy, of these predetermined “nucleation” cells are
stored. (Another Gaussian distribution is used for the

tGreek, upper- and lower-case indices are used for the
numbering of cells, elements and nodal points, respect-
ively.
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cells belonging to the boundary of the domain.) If a
cell is chosen several times (i.e. if it contains more
than one nucleation site), only the smaller nucleation
undercooling is used. If, during a time-step, the local
undercooling, AT}, of a particular “nucleation” cell,
v, which was still liquid becomes larger than the
prescribed nucleation undercooling, AT™, a new
grain forms. As described in Ref. [13], the state index
of this cell, which was zero when it was liquid, is then
set to a positive integer value randomly chosen
among a certain number of orientation classes. In two
dimensions, the 1—45°, +45°] possible orientations
of the four-fold symmetry dendrites was divided into
48 classes, thus resulting in orientation classes of less
than 2 degrees of difference.

Growth algorithm

Studying the two-dimensional growth of equiaxed
cyclohexanol crystals in a uniform thermal field,
Ovsienko et al. [30] observed that the envelope outlin-
ing the dendrite tip positions was nearly square. The
growth algorithm which was embedded in the CA
model previously developed for uniform temperature
specimens [13] was based on such observations. It was
shown that a dendrite tip correction had to be
introduced in order to retain the original misorienta-
tion of the parent nucleus. The capture of neighbour-
ing cells by the growing dendritic network was then
almost equivalent to the overall growth of a square
envelope. Since this algorithm cannot be easily
adapted to non-uniform temperature situations, a
new procedure is reported here which describes the
two-dimensional growth of a randomly oriented
grain in any thermal field.

Let consider first a “nucleation” cell, v, for which
the formation of a new grain had occurred at a time
t, (see Fig. 4). The main [10] and [01] crystallographic

V(AT)-8t=br,

Fig. 4. Schematic diagram illustrating the growth algorithm

used in the CA model for a dendritic grain whose [10]

direction is misoriented by an angle 6 with respect to the
horizontal axis of the CA network.
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directions make an angle 8, respectively 8 + m/2, with
respect to the horizontal axis. This “nucleation” cell,
whose temperature is assumed to be locally uniform,
is surrounded by four nearest-neighbour cells labelled
[, My, 4y and . Neglecting the incubation time
necessary for a spherical nucleus to become unstable
and dendritic, it is assumed that the dendritic net-
work within cell v develops as a square envelope.
The four half-diagonals (j =1,4) of this square
correspond to the dendrite tips directions and their
extension, *L! , is therefore given by
t
*Lﬁ,j=j‘ o(ATY)-dt’ “)
n

where v(AT") is the growth kinetics of the dendrite
tip, as deduced from the model of Kurz et al. [12],
the thermal history, T*, at that cell location being
given by the temperature field calculation. The
growth of the {11} planes can also be monitored.
Their position, L;;, from the centre of the cell, v, is
given by

*Lt . 1 !
L:’]:—ﬂ:—j v(AT?)-dr". (5
NN

At a critical time, 7., the square will catch the four cell
centres, y;. This will occur when

Ltf]:—\;—i-[coso + |sin 8]] ©)
where / is the spacing between the cells. At that time,
the four neighbouring cells will have their state index
number set to the same value as that of the parent cell
v, providing they are still liquid. Allowing other
squares to grow within each of the cell g — p, with
the corresponding temperature at each cell location
definitely biases the original misorientation of the
grain, as shown in Ref. [13]. In order to remove this
problem, rectangles are grown from each g, centre as
shown in Fig. 4. The four (11) directions (j = 1,4)
at each cell centre, g, (i = 1,4), grow with the same
growth kinetics, v (AT, )/ﬁ, defined in equation (5)
but with the local undercooling corresponding to
each cell location. At the time of capture, f., these
rectangles degenerate into segments whose size corre-
sponds to the actual extension of the dendritic front
which captured these sites. In Fig. 4, for example, the
initial extension of the four {11} directions at site u,
will be such that: LS + LS = \/E-l-[cos 0+

(28] m3

|sin@(] and L% =LS =0. In the time-stepping

M2 M4
calculation, each of these extensions of the rectangle

are updated as follows

1 !
70
L;‘i,j _Lm.j +ﬁ'[

th-&t +U(ATLi_51)'5t

Hj \/5

It should be pointed out that, in order to speed up the
computations, the velocity, v(AT%,), is computed as

(AT )-dt’
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a function of the undercooling, AT, , at the cell centre
and not at the four rectangle tips. This difference
might become important if the temperature difference
between two neighbouring cells, G -/, becomes large
compared to the local undercooling. It will be shown
in the following section that an accurate prediction of
the boundary between two columnar grains requires
a sufficiently small cell spacing.

It is clear that the same growth algorithm can be
applied to the “nucleation” cell (a square is a particu-
lar case of a rectangle) and to the capture of the four
neighbours of each cell, p; (capture of four neigh-
bours by a growing rectangle instead of a square).
When a growing cell has all its neighbours with a
non-zero index number, its (11) directions are no
longer incremented. Finally, the time step, J¢, used in
the CA model must be such that: v(AT")-t <1, i.e.
the growth of the dendritic network during one
time-step cannot exceed the cell spacing.

Coupling the FE and CA models

A linearised implicit FE enthalpy formulation of
the heat flow equation can be written as [29, 31, 32]

1 1
[E'[M]+[K] [571]] {oH}
= —[K]{T}+{b}' (8

[M] and [K] are the mass and conductivity matrices,
respectively, {b}', {T}' and {0H} are the vectors
corresponding to the boundary conditions, the tem-
peratures and enthalpy variations at the nodes of the
FE mesh, respectively. (The symbol “6H” has been
preferred to “AH” in order to avoid confusion with
any departure from equilibrium such as the under-
cooling AT.) The implicit equations have been lin-
earised thus introducing the diagonal matrix
[0T/0HY containing the derivatives of the tempera-
ture over the enthalpy at the nodes. In order to
remove oscillations which might occur at a eutectic
plateau or near the liquidus of the alloy, this matrix
can be replaced by (p-c,)”"-[I] where p-c, is the
volumetric specific heat and [/] is the identity matrix
[31]. The resolution of equation (8) thus gives the
enthalpy variations, 6H,, at the nodes during a time
step, ot. As in the micro-macroscopic models of
solidification [29, 32], these variations of enthalpy are
then converted into variations of temperature and of
volume fraction of solid using nucleation-growth
models. In the present case, this conversion is carried
out using the CA model as follows.

Within each time step, the known temperature at
time ¢, 7%, and the volumetric enthalpy variation,
SH,, of the cell v are first interpolated by using the
linear interpolation coefficients ¢,,

T,=Y ¢ T, ®

0H,=}. ¢,,"0H, (10)
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where the summation over the index (n) is carried out
over all the nodal points of the finite element (1)
which contains the cell (v) [e.g. three nodal points for
a linear triangular element, see Fig. 3(c)]. For each
cell, the unknown temperature, T'*%, and internal
volume fraction of solid, !} % must satisfy the follow-

ing relationship
6H,=p c,-6T,— AH, of,,
= pey [TV = T — AHp [f1% — f1,]
(n

where AH, is the latent heat of fusion per unit volume.

Three cases can be encountered for any cell:

(i) No variation of the volume fraction of solid

The explicit temperature, 7%, is above the liquidus
of the alloy (or below the final eutectic temperature)
in which case the volume fraction of solid of the cell
does not evolve during the time step (i.e. df,, =0),

(ii) Solidification of an already mushy cell

The cell has anindex #0and 7\, > T, > T,,,, i.e. it
has nucleated or it has been captured by a growing
grain but it is not fully solid. In this case, the volume
fraction of solid in the cell is assumed to follow the
microsegregation model of Scheil [18] (i.e. complete
mixing of solute within the remaining liquid in the cell
and no diffusion in the solid). Deriving the Scheil
equation simply gives

—0H,

pey (= To) = )1 — /5,1 7+ AH,
12

where T} and T, are the liquidus and melting point
of the alloy, respectively, and k is the partition
coefficient.

If the cell temperature is equal to the eutectic
temperature, T,,, with a solid fraction lower than
unity, fi, <1, a simple isothermal transformation is
made according to equation (11) until £}, = 1.

(iti) Capture or nucleation of a cell which was liquid

The cell has its index changed from zero to a
positive integer number during the time step, 1. For
a “nucleation cell” which was still liquid, this can
occur if the local undercooling given by (T, — T*) is
larger than the prescribed nucleation undercooling,
AT?™ (see the “Nucleation” section). This also
happens when the cell is captured by a growing grain
(see the “Growth algorithm” section). In both cases,
the whole cell is attributed a volume fraction of solid
given by the Scheil model at the corresponding
explicit temperature, T, i.e.

T — T k-1
o, =1—|="-m .
) TL_Tm

of. =

(13)

+The normalisation factor appearing in the denominator of
equation (14) is almost equal to the diagonal coefficient
of the lumped mass matrix, M, , divided by the volume
of a cell.
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[Please note that equation (13) for a cell is roughly
equivalent to the model of Flood and Hunt [33] which
assumed a truncated Scheil equation for the mod-
elling of the growth of a columnar front.]

It should be pointed out that the growth of a cell
which has at least one liquid neighbour at time ¢ is
updated according to the procedure described pre-
viously, using the explicit dendrite tip velocity,
v(ATS).

The latent heat contributions of all the cells associ-
ated with points (i—iii) above are then fed back into
the nodal points of the FE mesh according to

Z ¢vn : 5.f;,v
5fs‘" =2
Z d)vn

where the summation is now carried out over all the
cells belonging to the elements which have the nodal
point, n, as a vertex (i.e. for which ¢,,#0). The
denominator appearing in equation (14) is a normal-
isation factor.t

Once the df;, are known, the new temperatures at
the nodal points can be calculated according to

O0H,=p-c¢;0T,— AH; df;,
=p-c, (T4 — TH]— AHp [ f15% —fil

(14)

(15)

and the next FE heat flow calculation can be carried
out using these updated temperatures. It should be
emphasised that the time step used at the macro level
is not necessarily equal to the time step used to
calculate the nucleation-growth at the CA level. If
required, the time step used to calculate the micro-
structure formation can be refined to meet the con-
dition mentioned at the end of the “Growth
algorithm™ section. The scheme proposed here is
therefore almost identical to the micro-enthalpy
scheme proposed previously by Thévoz et al. [31, 32]
for the deterministic calculation of the grain
formation.

Test

The results shown in Fig. 5 have been calculated
for a single grain using the growth algorithm de-
scribed previously for a Moore configuration of the
CA network [34] (i.e. the same growth algorithm was
applied to the first- and second nearest neighbours of
each cell). The growth kinetics of the dendrite tips,
v(AT), was deduced from the experimental measure-
ments of Esaka [16] for the succinonitrile—
1.3wt%acetone alloy. It was fitted with a third order
polynomial, the parameters of which are listed in
Table 1. A linear temperature field, T(x, y, t), was
imposed at the FE nodes in order to validate the
growth algorithm and no latent heat was released
[i.e. only the coupling represented by the LHS
arrow of Fig. 3 was used via the temperature interp-
olation of equation (9)]. Assuming that the nucleation
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Fig. 5. Application of the grain growth algorithm for a single equiaxed grain solidifying in a uniform
temperature field (G =0K/m) at a constant cooling rate (7= —0.01 K/s) (a). The grain has been
nucleated at the liquidus temperature and with # = —30°. The positions of the grain interface at the times
indicated in the figures (in sec) have also been calculated in (b) and (c) for a given velocity of the liquidus
isotherm, v, = 10~*my/s, and two different thermal gradient, G = 250 and 500 K/m, respectively.

undercooling, AT, was equal to zero for a single
cell at the centre of the CA network, a grain was
nucleated with a misorientation 8 = —30° with re-
spect to the horizontal axis (see Fig. 4).

Figure 5(a) presents first the application of the
growth algorithm to a uniform temperature situation
imposed at the FE nodes. A grid of 200 x 200 cells
(not shown) was superimposed to the FE mesh with
triangular elements as shown in the figure. The
thermal gradient, G, was zero and the cooling rate, T,
was imposed to —0.01 K/s at all the FE nodes.
Superimposed onto the FE mesh are the calculated
positions of the dendritic grain envelope as predicted
by the CA model for the corresponding times labelled
in this figure (in seconds unit). As the undercooling
increases linearly with time, the growth rate of the
dendrite arms envelope increases as the cubic power
of time (see Table 1). As can be seen, the new growth
algorithm proposed above does produce a square
shape dendritic grain when applied to a uniform
temperature situation, regardless of the grain misori-
entation with respect to the CA axes. As for the
“dendrite tip” correction proposed in Ref. {13] for a
uniform temperature field, this new algorithm retains
the initial misorientation of the nucleus. However, it
has the advantage of also handling non-uniform
temperature situations as shown below.

Figures 5(b) and (c) show the results predicted by
the CA-FE model when the same grain shown in
Fig. 5(a) is placed in a non-uniform temperature
situation. In both figures, the uniform thermal gradi-

ent, G, is vertical and the cooling rate, T, is constant
(the values are listed in the figure caption). As can be
seen, the envelope of the grain extends faster towards
the bottom of the domain because it is more under-
cooled as was already shown to be the case for
eutectic grains [15]. The upper portion of the den-
drites envelope tends to follow the horizontal liquidus
isotherm, which moves upwards with a velocity
o ] =|T|-G~". The stationary growth of the upper
part of the grain envelope is characterised by a
constant undercooling, ATy, with a value associated
with the growth kinetics of the dendrites tips when
v =v/cos @ [i.e. AT,=AT(v /cosB)]. As could be
expected, the adaptation of the grain envelope to the
stationary situation is faster as the thermal gradient
increases for a given velocity of the isotherm.
Although such results seem to be in qualitative
agreement with the desired evolution of the grain
envelope, further validation by experimentation is
necessary, as is demonstrated in the next section.

RESULTS AND DISCUSSION

Grain selection in the columnar zone

A comparison with experimental observations of
grain selection in organic analogues is first presented
in Fig. 6. The Bridgman growth of the succinonitrile—
acetone alloy shown in Fig. 1 was modelled with the
CA-FE model using a network of 175 x 175 square
cells and triangular finite elements to impose the

Table 1. Growth kinetics and nucleation parameters

Succinonitrile-1.3wt% acetone alloy
Growth kinetics: v(AT) =a, AT + ay- AT?

Aluminium-7wt% silicon alloy
Growth kinetics: v(AT) = a, - AT? + a, - AT?

dn [

dAT) " ar, J32

Nucleation law:

e~ [AT—AT)/IAT, ]2

4,=826-10°ms 'K
a;,=8.18-10 ms™' K3

a,=2.90-10"°ms™' K2
a;=149-10"*ms™ ! K3
AT =55K

AT,=05K
Aoy = 27100 m ™3

max
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Fig. 6. Prediction of the grain growth and of the grain
boundaries for the directional solidification of the organic
alloy shown in Fig. 1 (cell density n, = 1782 mm~—2).

experimental thermal conditions (G = 1900 K/m,
v, = 86-10~°m/s) [16]. For Fig. 6, the thermal gradi-
ent and the velocity of the liquidus isotherm were
assumed to be given by the experimental arrange-
ment. Therefore, the latent heat released by the grains
was neglected in the computation and the only coup-
ling was the temperature interpolation between the
FE nodes and the CA cells. The growth kinetics of the
dendrite tips was deduced from experimental
measurements [16] (see Table 1). Three grains with
crystallographic orientations corresponding to those
seen in the experiment shown in Fig. 1 were nucleated
in the bottom part of the domain before the start of
the growth calculation. The orientations 6 of the <10
directions for the left-hand (1), central (c) and right-
hand (r) grains are indicated in Fig. 6.

As was already observed in the experiment shown
in Fig. 1, the predicted interface of the central grain
during growth (bottom part of Fig. 6) is at a lower
temperature than that of the two external grains. The
CA model is indeed able to reproduce the orientation
dependence of the dendrite tip position. As a result,
the calculated boundary between the converging left-
hand and central grains is locked to a direction close
to the left-hand grain orientation. On the other side
of the central grain, the orientation 6 of the pre-
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dicted boundary between the two converging grains
is in-between the orientations 8, and 0, of the two
grains (A = 18.5°). This value is close to the exper-
imental observation 8 = 19°. However, as shown in
Fig. 7, the prediction of the grain boundary between
the two diverging grains of Fig. 1 depends upon the
density of cells, n,, used in the CA network: when the
cell density increases from 50 to 500 mm~2 (i.e. /
varies from 141 to 45 um), the orientation, fg, of the
computed grain boundary increases from 12 to 18.5°.
Above 500 mm 2, it remains almost constant.

It is interesting to compare the CA cell size
(! =45 ym) associated with the converged value of
the grain boundary with the secondary dendrite arm
spacing, 4,. The value measured by Esaka close to the
dendrite tips, A, =8.4 + 0.3 um [16], is smaller than
the cell spacing /. However, Esaka showed that the
branching mechanism of secondary and tertiary
arms, which is responsible for the grain competition,
only occurs with “active” branches (i.e. with branches
which have escaped from the solute field of their
neighbours by statistical fluctuations). These “active”
branches are spaced by several A, values. Thus, the
growth algorithm built in the CA model appears to
predict the correct boundary between two grains of
diverging orientations when the cell size is of the
order of the spacing separating the “active” branches.
Further experimental work is required, however, to
validate the 2d growth algorithm and to verify this
conjecture under various growth conditions (thermal
gradient, solidification rate, grains configuration,
alloy concentration).

Columnar-to-equiaxed transition

The previous example shown in Fig. 6 illustrates
the ability of the model to simulate the grain selection
which operates during the growth of columnar grains.
But it only validates the growth algorithm part of the
model and the FE to CA coupling [i.e. the tempera-
ture interpolation shown as the LHS arrow in Fig. 3].

20+
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Fig. 7. Calculated angle of the boundary between the two
diverging grains on the RHS of Fig. 6 as a function of the
density of cells used in the CA calculation.
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Table 2. Thermophysical properties of the Al-7wt% Si alloy (mainly Refs [31]

and [41])
Thermal conductivity K (W/m/°C) 175 at T= 10°C
180 150°C
150 577°C
80 620°C
90 650°C
90 700°C
110 750°C
Volumetric specific heat  pe, J/m*/°C) 244-10° at T= 27°C
2.65- 10° 227°C
2.84-10° 427°C
3.50-10° 660°C
Volumetric latent heat AH;  (Jjm’) 9.50 - 108
Melting point T, Q) 660
Eutectic temperature Ton (°C) 577
Partition coefficient k &S] 0.117
Slope of the liquidus line m (°C/%) —6

In order to test the fully coupled model (LHS and
RHS arrows in Fig. 3), the CET presented in Fig. 2
has been simulated. The time-dependent boundary
condition at the bottom of the Al-7wt% Si ingot was
given by the heat flow calculated from the inverse
method. The thermophysical properties of the alloy
are listed in Table 2. A regular one-dimensional mesh
of 100 elements was used to solve the implicit en-
thalpy formulation of the heat flow equation
[equation (8)]. Since the thermal field was only one-
dimensional, the interpolation coefficients, ¢,,, be-
tween the FE nodes and the CA cells were simply a
function of the height. The heterogeneous nucleation
at the bottom surface of the casting was assumed to
occur near to the liquidus temperature with a very
narrow Gaussian distribution. The parameters of the
Gaussian distribution used to describe the hetero-
geneous nucleation in the bulk of the liquid were
adjusted to match both the experimental cooling
curves and the grain structure. These parameters are
listed in Table 1 together with the growth kinetics of
the dendrite tips of this alloy as calculated with the
model of Kurz et al. [12].

The cooling curves and grain structure computed
for the Al-7wt% Si ingot using the CA-FE model are
presented in Figs 8 and 9, respectively. The calculated
temperature evolutions of Fig. 8(a) correspond to the
seven locations of the Pt-Pt10%Rh thermocouples
shown in Fig. 2 and thus can be compared directly
with the experimental cooling curves also shown in
this figure. The excellent overall agreement of the
calculated and measured curves seen in Fig. 8(a) is
due to: (i) the well controlled one-dimensional heat
extraction of the experimental arrangement; (ii) the
precision of the temperature measurement in the
copper chill and the associated inverse method used
to deduce the boundary condition at the bottom of
the ingot; (iii) the accuracy of the thermophysical

1By the term “‘equilibrium”™ is meant all the models which
assume complete mixing of solute in the liquid region
(i.e. for which solidification starts at the liquidus tem-
perature), even though back-diffusion in the solid
already introduces non-equilibrium and non-reversible
effects.

properties of the alloy (see Table 2). (The vertical
dotted line observed near 1650 s corresponds to the
loss of thermocouple No. 7 after the ingot had
solidified.) The formation of the interdendritic eutec-
tic near 577°C which was simulated as an isothermal
equilibrium reaction in the present model is clearly
visible in the calculated cooling curves as small
plateaux.

As for the deterministic micro-macroscopic ap-
proach of dendritic solidification [29], the deviations
from equilibrium?t predicted by the CA-FE model
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Fig. 8. (a) Experimental (dotted lines) and calculated (solid

lines) cooling curves for the Al-7Twt% Si alloy ingot shown

in Fig. 2 (locations of the thermocouples: 20, 40, 60, 80, 100,

120 and 140 mm from the copper chill). (b) Magnification

of the cooling curves shown in (a) near the liquidus tempera-
ture (77, = 618°C).
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Fig. 9. Grain structure calculated with the CA-FE model
for the longitudinal section of the Al--7wt% Si ingot shown
in Fig. 2.

only occur in a small temperature region near the
liquidus (7, = 618°C). For this reason, Fig. 8(b) is an
enlargement of Fig. 8(a) over an 8°C-temperature
range below the liquidus. As can be observed, the
simulated cooling curves exhibit some oscillations
which are associated with the discrete nature of the
cellular network. The amplitude of these oscillations
is of the order of the measurement precision and of
the noise of the measured cooling curves (+0.2 K).
More interesting are the slope variations of these
curves at the various locations of the thermocouples.
For the first three thermocouples nearest to the
chill, the heat extraction is too large to permit the
observation of any appreciable change in the slope of
these curves below the liquidus. As the cooling rate
decreases (in absolute value) with an increasing dis-
tance from the bottom surface, a change in the slope
of the recorded cooling curves in the region of
614-615°C can be observed for the last four thermo-
couples. It should be noted that thermocouples Nos
4 and 5 are still located in the columnar zone (see Fig.
2) whereas the thermocouples Nos 6 and 7 are within
the equiaxed region. Such variations in the slope of
the cooling curves are associated with the beginning
of solidification and are thus an indication of the
local undercooling at which the microstructure
forms. For columnar dendrites, this occurs at the time

GANDIN and RAPPAZ: CELLULAR AUTOMATON MODEL FOR GRAIN STRUCTURES

when the tips reach the corresponding thermocouple
location and gives a direct estimation of the columnar
undercooling [35]. Equiaxed grain morphologies are
usually associated with the presence of a recalescence
in the thermal history [29]. This is indeed the case for
thermocouple No. 7 which is located in the equiaxed
zone of the ingot (see Fig. 2) but is not the case for
the previous thermocouples. This point is further
discussed below.

As can be seen, the predictions of the CA-FE
simulation are consistent with the measured thermal
histories (occurrence of a slope change/recalescence
in the cooling curve, temperature at which the
change/recalescence occurs). The grain structure pre-
dicted by the model is shown in Fig. 9 and can be
compared with the features of the experimental longi-
tudinal micrograph of Fig. 2. At first glance, these
microstructural features are well reproduced by the
model. Among the many grains formed at the bottom
surface of the ingot only a few long columnar grains
succeed in growing. The grain competition which
occurs among these grains is similar to the one
presented previously for the succinonitrile—acetone
alloy and a specific grain configuration. In this
columnar zone, a few grains which have clearly
nucleated in the bulk of the liquid ahead of the
growing columnar front can also be seen (they are not
connected with the bottom surface of the mould).
Very often, these grains do not have a favourable
orientation with respect to the vertical heat flow
direction and they are therefore outgrown by the
previously selected columnar grains. Accordingly,
they appear as small “islands” in the columnar zone.
If they have the proper orientation, however, they can
grow and become elongated as was already observed
for eutectic grains growing in a thermal gradient [15].
At about mid-height of the casting, the thermal
gradient decreases and the undercooled liquid region
ahead of the columnar dendrite tips becomes wider.
Thus, the density of the grains nucleated in the bulk
of the liquid increases and their growth finally stops
the columnar front. These grains, however, still have
an elongated shape because of the thermal gradient.
As the thermal gradient continues to decrease in the
remaining liquid, such grains finally become truly
equiaxed in the upper part of the casting. In the
experimental micrograph shown in Fig. 2, the pres-
ence of a few larger equiaxed grains can also be
observed near the top surface of the ingot.

As already noted in Refs [36, 37], it is clear that the
appearance of the columnar region in Fig. 9 is
oversimplified when using a two- instead of a three-
dimensional CA grain growth simulation. This is due
to stereological effects associated with those grains
which do not nucleate in the plane of the section
micrograph but are intersected by that plane. The size
of the truly equiaxed grains in the upper part of the
simulated casting also differs from that of the exper-
imental micrograph. Although stereological effects
might also be invoked, the set of parameters chosen
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for the Gaussian distribution (see Table 1) or the
form of the nucleation law itself might be put in
question. Nevertheless, many of the features seen in
the micrograph of Fig. 2 are reproduced by the
CA-FE model. In particular, it appears that the CET
is not abrupt but occurs gradually: the long columnar
grains are first blocked by elongated grains nucleated
in the bulk of the liquid, these grains becoming more
equiaxed as the gradient decreases. Providing the heat
extraction and the gradient are small, a recalescence
can be measured and predicted in the equiaxed region
(thermocouple No. 7). The presence of stray grains
(islands) formed by bulk heterogeneous nucleation in
the bottom part as well as larger equiaxed grains near
the top surface of the casting are also observed in
both Figs 2 and 9.1

Considering the experimental and simulation evi-
dence shown previously, it is difficult to give a unique
and precise CET criterion for the one-dimensional
Al-7Twt% Si ingot (Figs 2 and 9). There is first a
morphology transition at about 90 mm from the
bottom of the casting (between thermocouples Nos 4
and 5) from the long columnar grains to clongated
grains nucleated in the bulk of the liquid but growing
in a thermal gradient. There is then another transition
near the location of thermocouple No. 6 (120 mm)
between elongated- and equiaxed-grain structures.
Which of the two transitions corresponds to the
CET? If the label “equiaxed grains” means “isotropic
shape grains”, then the CET occurs near the thermo-
couple No. 6 but if it corresponds to “grains nucle-
ated in the bulk of the liquid”, then the transition is
below thermocouple No. 5. The same ambiguity
arises if the definition of the CET is based upon the
occurrence of a recalescence in the cooling curves.
Although both thermocouples Nos 6 and 7 are
located within the zone of grains nucleated in the
bulk of the liquid, no recalescence is measured (and
simulated) for the thermocouple No. 6. This can be
explained by the fact that, at this location, the heat
extraction through the bottom part of the casting
(and thus the thermal gradient) is sufficient to remove
the latent heat released by the equiaxed grains. In
conclusion, there is a gradual change from long
columnar grains (with a few isolated grains), to
elongated grains and to finally equiaxed grains as the
thermal gradient decreases.

Although it is difficult in these conditions to define
clearly a CET criterion, the CA-FE model clearly

tSimilarly to what has been demonstrated in Ref. {36],
stereological effects might have been invoked to explain
the formation of the stray grains (islands) seen in the
columnar zone of Fig. 2 (i.e. columnar grains not
nucleated in, but yet cut by, the plane of the cross
section). However, in the present case, several obser-
vations make this explanation rather improbable: (i) the
small size of these islands, (ii) the absence of these islands
in the bottom part of the casting, (iii) the increased
number of these islands with increasing distance from
the copper chill (i.e. with decreasing thermal gradient).
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reproduces the experimental microstructural features
seen in Fig. 2 and the cooling curves shown in Fig.
8. In addition to directly producing a simulated
micrograph, such an approach offers several advan-
tages over the previously published deterministic
models of solidification [29]. Firstly, it can treat in a
single model both columnar and equiaxed micro-
structures. Secondly, it can account for the gradual
change of the microstructure and for the CET.
Thirdly, it can predict the shape of the grains nucle-
ated in the bulk of the liquid whereas deterministic
models always consider spherical envelops of the
grains. Finally, it only predicts a recalescence when
the thermal gradient is small whereas the micro-
enthalpy scheme [31, 32] always gives a recalescence
and the latent heat method [29, 38] produces un-
desired rebounding effects in the cooling curve. The
present time-stepping scheme is similar to the micro-
enthalpy scheme with a unique time step for both the
heat flow and CA calculations but the main difference
introduced by this technique is the spatial resolution
used to calculate the microstructure development.

CONCLUSIONS

Although Zhu and Smith [5] have already pub-
lished a coupling technique between a finite difference
heat flow calculation and a Monte Carlo simulation
of grain growth, the present contribution is the first
fully coupled Finite Element—Cellular Automaton
(CA-FE) model which includes the basic mechanisms
of dendrite growth and serious comparisons with
experimental data. At the microscopic scale of the CA
cells network, the model is based upon a Gaussian
distribution of the nucleation sites, the growth kin-
etics and the preferential growth directions of the
dendrite tips. The resulting growth algorithm built in
the CA model accounts for non-uniform temperature
situations and is not biased by the cell network. For
an organic analogue, it has been shown that this
growth algorithm can produce the correct grain
boundary between two converging and diverging
grains providing the cell size is of the order of the
spacing between “active” dendrite arms. On the
macroscopic scale, the CA-FE model is based upon
an implicit enthalpy formulation similar to the micro-
enthalpy scheme used in deterministic micro-macro
models of solidification [29, 31, 32]. The linear interp-
olation between nodes and cells allows the prediction
of the capture and nucleation of cells in non-uniform
temperature situations and to sum up the latent heat
release at the FE nodes using a truncated Scheil
approximation. The grain structure and the cooling
curves calculated for a one-dimensional Al-7wt%
Si ingot have been successfully compared with
experimental results obtained under well-controlled
conditions.

The applications of the CA-FE model presented
here are not limited to castings. The main limitation
of the model is due to the size of the dendritic grains
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which should not be too small with respect to the
typical dimension of the process in order to limit the
number of cells and the CPU time. The model has
already been applied to the simulation of the den-
dritic network extension in a single crystal turbine
blade near a re-entrant corner of the mould [39, 40].
Using such simulations, it is possible to calculate the
undercooling at which the dendrite arms reach the
end of the re-entrant corner as a function of the
thermal gradient and isotherm velocity. This under-
cooling is important when assessing the danger of
stray crystal formation at the head/foot of turbine
blades. Interesting results have also been obtained
with the present CA-FE model for the grain selection
in investment castings, for the grain formation and
CET in laser remelting, welding, continuous casting,
strip casting, etc. Since stereological effects have a
significant influence on the compound grain struc-
tures, the CA-FE model should be extended to three
dimensions in order to achieve a successful compari-
son with experimental micrographs. Further develop-
ments in this direction are being made. Finally, the
simple coupling technique proposed in the present
contribution can certainly be improved to reduce the
CPU time by using two steps for the FE and CA
calculations.
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