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Before we begin

• Connect to the training box using the instructions and credentials provided to you

• Copy cases for the training to your home directory

>> cp -r /opt/OpenFOAM/extra/optimization/2022_11_adjointTraining ~/.

• All cases to be covered are variants of the tutorials for adjointOptimisationFoam, found under

$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam

Many variants of these cases exist there, showcasing different code features. Make sure you explore them!

Throughout the training, you will be asked to run a number of tutorial cases. Depending 
on the number of the participants, these might be run in serial or in parallel. Use the 
Allrun scripts to run in serial or
Allrun.parallel scripts to run in parallel, 
according to your instructor’s guidelines
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What we will discuss: adjointOptimisationFoam

• An all-in-one OpenFOAM executable implementing an integrated, gradient-based optimisation workflow

• Product of a 12 years of development at PCOpt/NTUA and FOSS

• Integrated into the official OpenFOAM version in collaboration with OpenCFD

• Focus on shape optimisation through some simple examples

• Adjoint code corresponds to the one in v2206

• User manual: 
https://openfoam.com/documentation/files/adjointOptimisationFoamManual_v2006.pdf
Covers all functionality up until v2106

Acknowledgments:
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Current and future status of adjointOptimisationFoam
OpenFOAM v1906

• Adjoint to incompressible, steady-state flows
• Differentiation of the Spalart-Allmaras turbulence model
• Computation of sensitivity maps with the E-SI approach (see first part of the lecture)

OpenFOAM v1912

• Surface and volume parameterization using volumetric B-Splines
• Automated shape optimisation loops
• Computation of sensitivity derivatives using the FI approach (see first part of the lecture)

OpenFOAM v2006

• New objective function related to the qualitative evaluation and minimization of noise
• Sensitivity contributions from rotating boundaries

OpenFOAM v2112
• Smoothing of sensitivity maps

OpenFOAM v2206
• Adjoint to the k-ω SST turbulence model

Beyond

• Plenty of more capabilities available in-house (topology optimisation, unsteady adjoints, CHT, etc)
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The tutorial case

• Change directory to the laminar variant of the sbend case

>> cd ~/2022_11_adjointTraining/sbend/laminar/optimisation

• Case is derived from 
$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam/shapeOptimisation/sbend/laminar/opt/\
unconstrained/BFGS/

but with a smaller mesh to get results faster

• Laminar flow within an S-bend 2D duct, mesh is provided

• 𝑅𝑒 = 1000

• Objective: minimize volume-weighted total pressure losses
ଵ
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Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Drives the optimisation loop

Steepest descent, CG, BFGS …

PDE-based, Algebraic models …

Compute 𝐽

Solve adjoint equations → Ψ

Need to define variables controlling the aerodynamic shape

Quantity to be optimized (forces, moments, losses, etc)

Everything is implemented 
within OpenFOAM: 
No need for third-party 
software, external scripts, etc
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Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

constant/dynamicMeshDict

system/optimisationDict.primalSolvers

system/optimisationDict.adjointManagers, within each adjoint solver

Discretization in system/fvSchemes, Relaxation in system/fvSolution

Definition in: system/optimisationDict.optimisation.sensitivities

Definition in: system/optimisationDict.optimisation.updateMethod

Definition in: system/optimisationDict.optimisation.meshMovement
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Parameterization for shape optimisation:
• NURBS Curves (2D) and Surfaces (3D)
• All of the wall nodes
• Volumetric B-Splines (Free Form Deformation, FFD)

Volumetric B-Splines:
• Maps all CFD grid points within the morphing 

boxes from the Cartesian to a parametric 
space (𝑥, 𝑦, 𝑧) → (𝑢, 𝑣, 𝑤)

• Mapping has to be done only once
• Then, changing the control points will change 

all CFD grid nodes within the morphing box 
(boundary and internal)

• Update is done through an algebraic relation: 
very fast!

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Basic entries:
• Number of control points (CPs) per box direction
• Degree per direction (smaller degree → more local support)
• CPs defined either aligned with a coordinate system 

(Cartesian, cylindrical) or given manually through a 
dictionary

• Possible to confine the movement of (some of) the CPs in 
certain directions

• Continuity with the stationary part of the mesh must be 
preserved! Keeping the boundary CPs constant

Defined in: constant/dynamicMeshDictDefine design variables 𝑏௡

solver volumetricBSplinesMotionSolver;

volumetricBSplinesMotionSolverCoeffs
{
duct
{
type    cartesian;
nCPsU   9;
nCPsV   5;
nCPsW  3;
degreeU 3; // max: nCPsU - 1
degreeV 3; // max: nCPsV - 1 
degreeW 2; // max: nCPsW - 1

controlPointsDefinition axisAligned; 
lowerCpBounds (-1.1 -0.21 -0.05);
upperCpBounds ( 1.1  0.39  0.15);

confineUMovement false;
confineVMovement false;
confineWMovement true;
confineBoundaryControlPoints false;

confineUMinCPs ( (true true true) (true true true) );
confineUMaxCPs ( (true true true) (true true true) );
confineWMinCPs ( (true true true) );
confineWMaxCPs ( (true true true) );

}
}

>> writeMorpherCps
Writes the control points in a Paraview-readable format
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Incompressible, steady-state flows
• SIMPLE is incorporated into adjointOptimisationFoam
• Multi-point optimisation supported; can define more than 

one primal solvers

Desired for optimisation, if 
possible
• Well converged solution 

(e.g. residuals of ~1.e−05, 
1.e−06)

• Non-oscillating residuals

Defined in system/optimisationDict.primalSolversDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Quantity to be optimised
• adjointOptimisationFoam always assumes minimization
• Objectives can be defined as (surface or volume) integral 

quantities
• A number of objective functions are available: 

Forces, moments, total pressure losses etc …
• Multiple objective functions can be tackled by 

concatenating them into a single one using appropriate 
weights

𝐽 = 𝑤ଵ𝐽ଵ + 𝑤ଶ𝐽ଶ

Defined in system/optimisationDict.adjointManagers, 
within each adjoint solver

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Adjoint PDEs (laminar flows):
• Similar form with the Navier-Stokes equations. A few noticeable differences
• Adjoint convection (AC): adjoint velocity is convected by the (minus) primal 

velocity. Linear equations!
• Adjoint Transpose Convection (ATC): Non-conservative term. Numerically 

tricky in real-word applications. 
• Source terms if the objective function includes volume integrals containing 𝑝

or 𝑣௜

Additional terms and equations when dealing with turbulent flows

ACATC

Discretization in system/fvSchemes, Relaxation in system/fvSolutionDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Adjoint Boundary conditions:
• Depend on the type (not value!) of primal boundary conditions!
• Most common for incompressible flows: Dirichlet Inlet 𝑣⃗, Dirichlet Outlet 𝑝
• Depend on the derivatives of 𝐽 w.r.t. the pressure, velocity and stress tensor

Defined in 0/pa and 0/UaDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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How many adjoint equations do we have to solve?
• One for each objective for which we need the gradient

• Gradients of linear combinations of functions defined at a single 
operating point can be computed with one adjoint solution!

• Advanced methods dealing with constraints (e.g. SQP, constraint 
projection) need the gradient of the constraint function separately

• (At least) One for each operating point solved

Defined in system/optimisationDict.adjointManagersDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Two mathematical formulations for shape optimisation
• Based on Surface Integrals, (E)-SI

• Need to solve an additional adjoint grid displacement PDE for 𝑚௜
௔

• Boundary conditions are created automatically
• Need to define a linear solver in fvSolution
• No relaxation is required
• Solved at a post-processing level, i.e. after the solution of the 

adjoint mean flow equations

• Based on Field Integrals, FI
• Need to compute the grid sensitivities fields, i.e. ఋ௫ೖ

ఋ௕೙

• Depending on the grid displacement model this might be computed by
• solving additional PDEs (e.g. PDE-based grid displacement)
• Analytically (e.g. Volumetric B-Splines)

Defined in
system/optimisationDict.optimisation.sensitivities

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Compute the update of the design variables based on  ఋ௃

ఋ௕೙
through

𝑏௡
௡௘௪ = 𝑏௡

௢௟ௗ + 𝜂𝑠௡

• Unconstrained optimisation
• Steepest descent
• Conjugate Gradient
• Quasi-Newton methods: BFGS, SR1

• Constrained optimisation
• Constraint projection (exceptional for linear constraints)
• SQP

• Step (𝜂) definition
• Direct (usually not practical)
• Through a max. desired deformation in the initial opt. cycle

Defined in 
system/optimisationDict.optimisation.updateMethod

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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• Need to translate Δb୬ into a new geometry and computational mesh

• Remeshing can be costly and possibly result to inconsistent sensitivity 
derivatives. Grid displacement is preferable

• Depends on the parameterization and chosen grid displacement method
• Usually, one tool for parameterization (e.g. NURBS), a different one 

for grid displacement (e.g. Laplace PDEs)
• Volumetric B-Splines handles both simultaneously

• checkMesh ran after each update to check mesh quality 

Defined in 
system/optimisationDict.optimisation.meshMovement

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Run the optimization loop 
>> ./Allrun > log 2> err & (~2.5 min/4 procs)

What to examine:
• Is 𝐽 reduced?
• Is 𝐽 converged? (history in optimisation/objective folder)
• Have the flow equations converged? (check log file)
• Is the mesh valid at the optimised solutions? (check log 

file or checkMesh)
• What is the mechanism behind the reduction in 𝐽?
• Don’t be afraid of exotic solutions!

𝑝௧

|𝑣⃗|
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• Compute 𝜹𝑱

𝜹𝒙𝒊
𝒏𝒊

• A few changes in optimisationDict and controlDict
• Tells us how each boundary node has to move to 

reduce 𝑱
• Red: move against the surface normal (inwards)
• Blue: move towards the surface normal (outwards)
• White-ish: insignificant

• Computed on the initial geometry: does not mean that 
the optimised geometry will follow this ! …

• Good feedback towards the designer
• Useful in placing morhing boxes
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• Change to the sensitivity map folder
>> cd ~/2022_11_adjointTraining/sbend/laminar/sensitivityMap

• Run adjointOptimisationFoam, configured to compute the sensitivity map
>> ./Allrun > log 2> err & (~0.5 min/4 processors) 

• Visualize the pointSensNormalas1ESI field in paraview. Use a symmetric scale!

• Inspect the differences in optimisationDict and controlDict between the optimisation and sensivitiy map cases
>> cd ~/2022_11_adjointTraining/sbend/laminar

>> vim -d {optimisation,sensitivityMap}/system/optimisationDict

>> vim -d {optimisation,sensitivityMap}/system/controlDict

If you are not familiar with the vim text editor, you may use meld or kdiff3 visual editors to 
compare files
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• In more complex/industrial cases, checkerboards occur in 
the computed sensitivity maps.

• This problem becomes pronounced in meshes built with 
snappyHexMesh!

• The direction of favorable surface displacement becomes 
ambiguous...

• Smooth the sensitivity-map, G, by solving

on a finiteArea mesh.
• Be careful when comparing smoothed sensitivity maps on 

different meshes!...
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• Additional entries in 
system/optimisationDict.optimisation.sensitivities related to the 
Laplace-Beltrami equation

• The smoothing radius is either specified explicitly, or computed 
as a multiple of the average surface edges' length.

• Boundary conditions for the smooth sensitivity field are 
created automatically.

• For the creation of the faMesh, an faMeshDefinition dictionary can 
be optionally provided in the system folder.

• faSchemes & faSolution should be present in the system directory.

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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• Change to the smooth sensitivity map folder
>> cd ~/2022_11_adjointTraining/sbend/laminar/smoothSensMap

• Run adjointOptimisationFoam, configured to compute the sensitivity map and smooth it for various radiuses
>> ./Allrun > log 2> err & (~75 sec/1 processor)

• Visualize the faceSensNormalas1ESIRmult10 and smoothedSurfaceSensas1ESIRmult10 fields in 
paraview. Use a symmetric scale!

• Inspect the differences in optimisationDict between the sensitivity map and smooth sensivitiy map cases
>> cd ~/2022_11_adjointTraining/sbend/laminar

>> vim -d {sensitivityMap,smoothSensMap}/system/optimisationDict

If you are not familiar with vim text editor, you may use meld or kdiff3 visual editors to 
compare files
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Revisiting the tutorial case – Turbulent flows

• Change to the turbulent variant of the sbend case
>> cd ~/2022_11_adjointTraining/sbend/turbulent/losses/

• Case from $FOAM_TUTORIALS/incompressible/adjointOptimisationFoam/\
shapeOptimisation/sbend/turbulent/opt/BFGS/op1

with the addition of the adjoint to k-Omega SST

• Turbulent flow within an S-bend duct. 

• 𝑅𝑒 = 𝟏 × 𝟏𝟎𝟓

• Spalart-Allmaras & k-ω SST turbulence models

• Objective: minimize volume-weighted total pressure losses
ଵ

ଶ ௞
ଶ
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|𝑣⃗|
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Turbulent flows: Changes – Additional entries

• Flow equations: 
SA: additional entries in system/fvSchemes related to 
distance calculations. Why is it important?

• Adjoint equations: new PDEs to be solved for the adjoint 
turbulence model variables

• New terms to the sensitivity derivatives

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Turbulent flows: Changes – Additional entries
• The Spalart-Allmaras PDE includes the distance from the wall in its 

production and destruction terms.

• Distance field changes due to changes in the geometry during the 
optimisation. Need to account for it in the adjoint formulation.

• A number of methods to compute the distance field. Choice through 
system/fvSchemes.wallDist.

• Typical method is meshWave. Not easily differentiable using adjoints
since it is an algebraic method, not a PDE. 

• Preferred method in combination with adjoints: advectionDiffusion
(the eikonal or Hamiltion-Jacobi equation). 

• Solves a PDE for yWall so additional entries are required in 
fvSolution/fvSchemes. Boundary conditions created automatically.

• Do not use bounded schemes for the convection term!

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Turbulent flows: Changes – Additional entries

• Νew PDE(s) to be solved for the adjoint turbulence 
model variable(s) 
SA: nuaTilda,
k-ω SST: ka, wa

• Adjoint turbulence model defined in 
constant/adjointRASProperties

• New entries in fvSolution, fvSchemes

• Boundary conditions defined in 
SA: 0/nuaTilda, 
k-ω SST: 0/{ka, wa}

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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Turbulent flows: Changes – Additional entries

• Adjoint to the eikonal PDE gives additional contributions 
to 𝛿𝐽/𝛿𝑏௡

• The adjoint eikonal PDE is decoupled from the rest 
of the adjoint PDEs. Solved when computing 
sensitivity derivatives to compute the adjoint 
distance field, da. 

𝑹
𝜟𝒂 = − 𝟐

𝝏

𝝏𝒙𝒋
𝜟𝒂

𝝏𝜟

𝝏𝒙𝒋
+  𝝂෥ 𝒂𝝂෥𝑪𝜟 = 𝟎

• New entries in fvSolution, fvSchemes.

• Boundary conditions created automatically.

• (Optional) additional entries in the sensitivities part 
of optimisationDict. All have default values and can 
be omitted to ease the setup.

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ
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S-bend: optimisation results for a turbulent flow (1)
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• Run the optimization loops 
>> cd /2022_11_adjointTraining/sbend/turbulent/losses/SA
>>./Allrun.parallel > log 2> err & 
(~8 min/4 procs)
>> cd /2022_11_adjointTraining/sbend/turbulent/losses/kOmegaSST
>> ./Allrun.parallel > log 2> err &
(~12 min/4 procs)

• Same objective and parameterization as in the laminar case

𝑝௧

|𝑣⃗|

k-ω SST Spalart-Allmaras

At a first glance, both the final geometries and the course of the 
optimisation look similar for both turbulence models
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S-bend: optimisation results for a turbulent flow (2) 
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Initial
Optimised (SA)
Optimised (k-ω SST)

• A close examination reveals minor differences in the 
optimised geometries

• They do follow the same trend however

• The objective is reduced by almost the same percentage 
(~11.5 %) with both turbulence models
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S-bend: comparison of optimal geometries for laminar and turbulent flows
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Visualize the optimised geometries from the k-ω SST and Spalart-Allmaras cases in Paraview

• Create the blank Paraview files
>> touch ~/2022_11_adjointTraining/sbend/turbulent/kOmegaSST/foam.foam
>> touch ~/2022_11_adjointTraining/sbend/turbulent/losses/SA/foam.foam

• Open them both in Paraview

• Overlay the two optimised geometries and their flow fields
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Takeaway messages:
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• Adjoint supports optimisation loops at a small CPU cost (~20 cycles → ~𝟒𝟎 flow solutions)

• Ideal for both early stage development and refinement

• More optimisation types available
• Topology optimisation (design of internal flows with known inlets/outlets)
• Active flow control (jet-based optimisation)
• A Posteriori Error Analysis (optimally refine your mesh to compute an accurate objective)
• Design under uncertainties

• Optimisation (like CFD) is not magic. Take care when defining your problem

• Before accepting (or discarding) an optimised geometry
• Check the convergence of the flow equations
• Check the mesh quality

• Try to understand the mechanisms behind the objective reduction
• Often leads to better designs and/or better defined optimisation problems!
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Additional topics covered through the tutorials under
$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam
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• Adjoint to turbulent flows
shapeOptimisation/sbend/turbulent/opt/BFGS/op1

• Effect of the update method 
shapeOptimisation/sbend/laminar/opt/unconstrained

• Constrained optimisation
shapeOptimisation/naca0012/lift/opt/constraintProjection

• 3D, industrial-like cases
shapeOptimisation/motorbike

When in doubt about the case settings, you can consult the manual 


