
Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 1

NATIONAL TECHNICAL UNIVERSITY OF ATHENS (NTUA)
SCHOOL OF MECHANICAL ENGINEERING
LAB. OF THERMAL TURBOMACHINES
PARALLEL CFD & Optimization UNIT (PCOpt/NTUA)

The Continuous Adjoint Method in Aero/Hydrodynamic Optimisation
Part II: Adjoint Optimisation in OpenFOAM. Hands-on Training

Dr. Kyriakos C. Giannakoglou, Professor NTUA
Dr. Evangelos (Vaggelis) M. Papoutsis-Kiachagias

November 9, 2022

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 2

Before we begin

• Connect to the training box using the instructions and credentials provided to you

• Copy cases for the training to your home directory

>> cp -r /opt/OpenFOAM/extra/optimization/2022_11_adjointTraining ~/.

• All cases to be covered are variants of the tutorials for adjointOptimisationFoam, found under

$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam

Many variants of these cases exist there, showcasing different code features. Make sure you explore them!

Throughout the training, you will be asked to run a number of tutorial cases. Depending
on the number of the participants, these might be run in serial or in parallel. Use the
Allrun scripts to run in serial or
Allrun.parallel scripts to run in parallel,
according to your instructor’s guidelines

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Themis Skamagkis
Andreas Margetis
Nikolaos Galanos

Dr. Konstantinos Gkaragkounis
Dr. Ioannis Kavvadias
Dr. Alexandros Zymaris
James Koch
Dr. Andrew Heather

3

What we will discuss: adjointOptimisationFoam

• An all-in-one OpenFOAM executable implementing an integrated, gradient-based optimisation workflow

• Product of a 12 years of development at PCOpt/NTUA and FOSS

• Integrated into the official OpenFOAM version in collaboration with OpenCFD

• Focus on shape optimisation through some simple examples

• Adjoint code corresponds to the one in v2206

• User manual:
https://openfoam.com/documentation/files/adjointOptimisationFoamManual_v2006.pdf
Covers all functionality up until v2106

Acknowledgments:

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 4

Current and future status of adjointOptimisationFoam
OpenFOAM v1906

• Adjoint to incompressible, steady-state flows
• Differentiation of the Spalart-Allmaras turbulence model
• Computation of sensitivity maps with the E-SI approach (see first part of the lecture)

OpenFOAM v1912

• Surface and volume parameterization using volumetric B-Splines
• Automated shape optimisation loops
• Computation of sensitivity derivatives using the FI approach (see first part of the lecture)

OpenFOAM v2006

• New objective function related to the qualitative evaluation and minimization of noise
• Sensitivity contributions from rotating boundaries

OpenFOAM v2112
• Smoothing of sensitivity maps

OpenFOAM v2206
• Adjoint to the k-ω SST turbulence model

Beyond

• Plenty of more capabilities available in-house (topology optimisation, unsteady adjoints, CHT, etc)

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 5

The tutorial case

• Change directory to the laminar variant of the sbend case

>> cd ~/2022_11_adjointTraining/sbend/laminar/optimisation

• Case is derived from
$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam/shapeOptimisation/sbend/laminar/opt/\
unconstrained/BFGS/

but with a smaller mesh to get results faster

• Laminar flow within an S-bend 2D duct, mesh is provided

• 𝑅𝑒 = 1000

• Objective: minimize volume-weighted total pressure losses
ଵ

ଶ ௞
ଶ

௜ ௜ௌ಺,ೀ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape Optimisation Loop

6

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Drives the optimisation loop

Steepest descent, CG, BFGS …

PDE-based, Algebraic models …

Compute 𝐽

Solve adjoint equations → Ψ

Need to define variables controlling the aerodynamic shape

Quantity to be optimized (forces, moments, losses, etc)

Everything is implemented
within OpenFOAM:
No need for third-party
software, external scripts, etc

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape Optimisation Loop

7

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

constant/dynamicMeshDict

system/optimisationDict.primalSolvers

system/optimisationDict.adjointManagers, within each adjoint solver

Discretization in system/fvSchemes, Relaxation in system/fvSolution

Definition in: system/optimisationDict.optimisation.sensitivities

Definition in: system/optimisationDict.optimisation.updateMethod

Definition in: system/optimisationDict.optimisation.meshMovement

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

8

Parameterization for shape optimisation:
• NURBS Curves (2D) and Surfaces (3D)
• All of the wall nodes
• Volumetric B-Splines (Free Form Deformation, FFD)

Volumetric B-Splines:
• Maps all CFD grid points within the morphing

boxes from the Cartesian to a parametric
space (𝑥, 𝑦, 𝑧) → (𝑢, 𝑣, 𝑤)

• Mapping has to be done only once
• Then, changing the control points will change

all CFD grid nodes within the morphing box
(boundary and internal)

• Update is done through an algebraic relation:
very fast!

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

9

Basic entries:
• Number of control points (CPs) per box direction
• Degree per direction (smaller degree → more local support)
• CPs defined either aligned with a coordinate system

(Cartesian, cylindrical) or given manually through a
dictionary

• Possible to confine the movement of (some of) the CPs in
certain directions

• Continuity with the stationary part of the mesh must be
preserved! Keeping the boundary CPs constant

Defined in: constant/dynamicMeshDictDefine design variables 𝑏௡

solver volumetricBSplinesMotionSolver;

volumetricBSplinesMotionSolverCoeffs
{
duct
{
type cartesian;
nCPsU 9;
nCPsV 5;
nCPsW 3;
degreeU 3; // max: nCPsU - 1
degreeV 3; // max: nCPsV - 1
degreeW 2; // max: nCPsW - 1

controlPointsDefinition axisAligned;
lowerCpBounds (-1.1 -0.21 -0.05);
upperCpBounds (1.1 0.39 0.15);

confineUMovement false;
confineVMovement false;
confineWMovement true;
confineBoundaryControlPoints false;

confineUMinCPs ((true true true) (true true true));
confineUMaxCPs ((true true true) (true true true));
confineWMinCPs ((true true true));
confineWMaxCPs ((true true true));

}
}

>> writeMorpherCps
Writes the control points in a Paraview-readable format

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

10

Incompressible, steady-state flows
• SIMPLE is incorporated into adjointOptimisationFoam
• Multi-point optimisation supported; can define more than

one primal solvers

Desired for optimisation, if
possible
• Well converged solution

(e.g. residuals of ~1.e−05,
1.e−06)

• Non-oscillating residuals

Defined in system/optimisationDict.primalSolversDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

11

Quantity to be optimised
• adjointOptimisationFoam always assumes minimization
• Objectives can be defined as (surface or volume) integral

quantities
• A number of objective functions are available:

Forces, moments, total pressure losses etc …
• Multiple objective functions can be tackled by

concatenating them into a single one using appropriate
weights

𝐽 = 𝑤ଵ𝐽ଵ + 𝑤ଶ𝐽ଶ

Defined in system/optimisationDict.adjointManagers,
within each adjoint solver

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

12

Adjoint PDEs (laminar flows):
• Similar form with the Navier-Stokes equations. A few noticeable differences
• Adjoint convection (AC): adjoint velocity is convected by the (minus) primal

velocity. Linear equations!
• Adjoint Transpose Convection (ATC): Non-conservative term. Numerically

tricky in real-word applications.
• Source terms if the objective function includes volume integrals containing 𝑝

or 𝑣௜

Additional terms and equations when dealing with turbulent flows

ACATC

Discretization in system/fvSchemes, Relaxation in system/fvSolutionDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

13

Adjoint Boundary conditions:
• Depend on the type (not value!) of primal boundary conditions!
• Most common for incompressible flows: Dirichlet Inlet 𝑣⃗, Dirichlet Outlet 𝑝
• Depend on the derivatives of 𝐽 w.r.t. the pressure, velocity and stress tensor

Defined in 0/pa and 0/UaDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

14

How many adjoint equations do we have to solve?
• One for each objective for which we need the gradient

• Gradients of linear combinations of functions defined at a single
operating point can be computed with one adjoint solution!

• Advanced methods dealing with constraints (e.g. SQP, constraint
projection) need the gradient of the constraint function separately

• (At least) One for each operating point solved

Defined in system/optimisationDict.adjointManagersDefine design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

15

Two mathematical formulations for shape optimisation
• Based on Surface Integrals, (E)-SI

• Need to solve an additional adjoint grid displacement PDE for 𝑚௜
௔

• Boundary conditions are created automatically
• Need to define a linear solver in fvSolution
• No relaxation is required
• Solved at a post-processing level, i.e. after the solution of the

adjoint mean flow equations

• Based on Field Integrals, FI
• Need to compute the grid sensitivities fields, i.e. ఋ௫ೖ

ఋ௕೙

• Depending on the grid displacement model this might be computed by
• solving additional PDEs (e.g. PDE-based grid displacement)
• Analytically (e.g. Volumetric B-Splines)

Defined in
system/optimisationDict.optimisation.sensitivities

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

16

Compute the update of the design variables based on ఋ௃

ఋ௕೙
through

𝑏௡
௡௘௪ = 𝑏௡

௢௟ௗ + 𝜂𝑠௡

• Unconstrained optimisation
• Steepest descent
• Conjugate Gradient
• Quasi-Newton methods: BFGS, SR1

• Constrained optimisation
• Constraint projection (exceptional for linear constraints)
• SQP

• Step (𝜂) definition
• Direct (usually not practical)
• Through a max. desired deformation in the initial opt. cycle

Defined in
system/optimisationDict.optimisation.updateMethod

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Gradient-based Shape optimisation Loop

17

• Need to translate Δb୬ into a new geometry and computational mesh

• Remeshing can be costly and possibly result to inconsistent sensitivity
derivatives. Grid displacement is preferable

• Depends on the parameterization and chosen grid displacement method
• Usually, one tool for parameterization (e.g. NURBS), a different one

for grid displacement (e.g. Laplace PDEs)
• Volumetric B-Splines handles both simultaneously

• checkMesh ran after each update to check mesh quality

Defined in
system/optimisationDict.optimisation.meshMovement

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: optimisation results

18

Run the optimization loop
>> ./Allrun > log 2> err & (~2.5 min/4 procs)

What to examine:
• Is 𝐽 reduced?
• Is 𝐽 converged? (history in optimisation/objective folder)
• Have the flow equations converged? (check log file)
• Is the mesh valid at the optimised solutions? (check log

file or checkMesh)
• What is the mechanism behind the reduction in 𝐽?
• Don’t be afraid of exotic solutions!

𝑝௧

|𝑣⃗|

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: Computing sensitivity maps

19

• Compute 𝜹𝑱

𝜹𝒙𝒊
𝒏𝒊

• A few changes in optimisationDict and controlDict
• Tells us how each boundary node has to move to

reduce 𝑱
• Red: move against the surface normal (inwards)
• Blue: move towards the surface normal (outwards)
• White-ish: insignificant

• Computed on the initial geometry: does not mean that
the optimised geometry will follow this ! …

• Good feedback towards the designer
• Useful in placing morhing boxes

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: Computing sensitivity maps

20

• Change to the sensitivity map folder
>> cd ~/2022_11_adjointTraining/sbend/laminar/sensitivityMap

• Run adjointOptimisationFoam, configured to compute the sensitivity map
>> ./Allrun > log 2> err & (~0.5 min/4 processors)

• Visualize the pointSensNormalas1ESI field in paraview. Use a symmetric scale!

• Inspect the differences in optimisationDict and controlDict between the optimisation and sensivitiy map cases
>> cd ~/2022_11_adjointTraining/sbend/laminar

>> vim -d {optimisation,sensitivityMap}/system/optimisationDict

>> vim -d {optimisation,sensitivityMap}/system/controlDict

If you are not familiar with the vim text editor, you may use meld or kdiff3 visual editors to
compare files

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: Smoothing the sensitivity map

21

• In more complex/industrial cases, checkerboards occur in
the computed sensitivity maps.

• This problem becomes pronounced in meshes built with
snappyHexMesh!

• The direction of favorable surface displacement becomes
ambiguous...

• Smooth the sensitivity-map, G, by solving

on a finiteArea mesh.
• Be careful when comparing smoothed sensitivity maps on

different meshes!...

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: Smoothing the sensitivity map – Additional Entries

22

• Additional entries in
system/optimisationDict.optimisation.sensitivities related to the
Laplace-Beltrami equation

• The smoothing radius is either specified explicitly, or computed
as a multiple of the average surface edges' length.

• Boundary conditions for the smooth sensitivity field are
created automatically.

• For the creation of the faMesh, an faMeshDefinition dictionary can
be optionally provided in the system folder.

• faSchemes & faSolution should be present in the system directory.

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: Smoothing the sensitivity map

23

• Change to the smooth sensitivity map folder
>> cd ~/2022_11_adjointTraining/sbend/laminar/smoothSensMap

• Run adjointOptimisationFoam, configured to compute the sensitivity map and smooth it for various radiuses
>> ./Allrun > log 2> err & (~75 sec/1 processor)

• Visualize the faceSensNormalas1ESIRmult10 and smoothedSurfaceSensas1ESIRmult10 fields in
paraview. Use a symmetric scale!

• Inspect the differences in optimisationDict between the sensitivity map and smooth sensivitiy map cases
>> cd ~/2022_11_adjointTraining/sbend/laminar

>> vim -d {sensitivityMap,smoothSensMap}/system/optimisationDict

If you are not familiar with vim text editor, you may use meld or kdiff3 visual editors to
compare files

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 24

Revisiting the tutorial case – Turbulent flows

• Change to the turbulent variant of the sbend case
>> cd ~/2022_11_adjointTraining/sbend/turbulent/losses/

• Case from $FOAM_TUTORIALS/incompressible/adjointOptimisationFoam/\
shapeOptimisation/sbend/turbulent/opt/BFGS/op1

with the addition of the adjoint to k-Omega SST

• Turbulent flow within an S-bend duct.

• 𝑅𝑒 = 𝟏 × 𝟏𝟎𝟓

• Spalart-Allmaras & k-ω SST turbulence models

• Objective: minimize volume-weighted total pressure losses
ଵ

ଶ ௞
ଶ

௜ ௜ௌ಺,ೀ

|𝑣⃗|

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 25

Turbulent flows: Changes – Additional entries

• Flow equations:
SA: additional entries in system/fvSchemes related to
distance calculations. Why is it important?

• Adjoint equations: new PDEs to be solved for the adjoint
turbulence model variables

• New terms to the sensitivity derivatives

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 26

Turbulent flows: Changes – Additional entries
• The Spalart-Allmaras PDE includes the distance from the wall in its

production and destruction terms.

• Distance field changes due to changes in the geometry during the
optimisation. Need to account for it in the adjoint formulation.

• A number of methods to compute the distance field. Choice through
system/fvSchemes.wallDist.

• Typical method is meshWave. Not easily differentiable using adjoints
since it is an algebraic method, not a PDE.

• Preferred method in combination with adjoints: advectionDiffusion
(the eikonal or Hamiltion-Jacobi equation).

• Solves a PDE for yWall so additional entries are required in
fvSolution/fvSchemes. Boundary conditions created automatically.

• Do not use bounded schemes for the convection term!

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 27

Turbulent flows: Changes – Additional entries

• Νew PDE(s) to be solved for the adjoint turbulence
model variable(s)
SA: nuaTilda,
k-ω SST: ka, wa

• Adjoint turbulence model defined in
constant/adjointRASProperties

• New entries in fvSolution, fvSchemes

• Boundary conditions defined in
SA: 0/nuaTilda,
k-ω SST: 0/{ka, wa}

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com 28

Turbulent flows: Changes – Additional entries

• Adjoint to the eikonal PDE gives additional contributions
to 𝛿𝐽/𝛿𝑏௡

• The adjoint eikonal PDE is decoupled from the rest
of the adjoint PDEs. Solved when computing
sensitivity derivatives to compute the adjoint
distance field, da.

𝑹
𝜟𝒂 = − 𝟐

𝝏

𝝏𝒙𝒋
𝜟𝒂

𝝏𝜟

𝝏𝒙𝒋
+ 𝝂෥ 𝒂𝝂෥𝑪𝜟 = 𝟎

• New entries in fvSolution, fvSchemes.

• Boundary conditions created automatically.

• (Optional) additional entries in the sensitivities part
of optimisationDict. All have default values and can
be omitted to ease the setup.

Define design variables 𝑏௡

Solve flow equations → 𝑈

Compute 𝛿𝐽/𝛿𝑏௡ (𝑈, Ψ)

Update design variables

Update mesh

Compute 𝐽

Solve adjoint equations → Ψ

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: optimisation results for a turbulent flow (1)

29

• Run the optimization loops
>> cd /2022_11_adjointTraining/sbend/turbulent/losses/SA
>>./Allrun.parallel > log 2> err &
(~8 min/4 procs)
>> cd /2022_11_adjointTraining/sbend/turbulent/losses/kOmegaSST
>> ./Allrun.parallel > log 2> err &
(~12 min/4 procs)

• Same objective and parameterization as in the laminar case

𝑝௧

|𝑣⃗|

k-ω SST Spalart-Allmaras

At a first glance, both the final geometries and the course of the
optimisation look similar for both turbulence models

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: optimisation results for a turbulent flow (2)

30

Initial
Optimised (SA)
Optimised (k-ω SST)

• A close examination reveals minor differences in the
optimised geometries

• They do follow the same trend however

• The objective is reduced by almost the same percentage
(~11.5 %) with both turbulence models

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

S-bend: comparison of optimal geometries for laminar and turbulent flows

31

Visualize the optimised geometries from the k-ω SST and Spalart-Allmaras cases in Paraview

• Create the blank Paraview files
>> touch ~/2022_11_adjointTraining/sbend/turbulent/kOmegaSST/foam.foam
>> touch ~/2022_11_adjointTraining/sbend/turbulent/losses/SA/foam.foam

• Open them both in Paraview

• Overlay the two optimised geometries and their flow fields

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Takeaway messages:

32

• Adjoint supports optimisation loops at a small CPU cost (~20 cycles → ~𝟒𝟎 flow solutions)

• Ideal for both early stage development and refinement

• More optimisation types available
• Topology optimisation (design of internal flows with known inlets/outlets)
• Active flow control (jet-based optimisation)
• A Posteriori Error Analysis (optimally refine your mesh to compute an accurate objective)
• Design under uncertainties

• Optimisation (like CFD) is not magic. Take care when defining your problem

• Before accepting (or discarding) an optimised geometry
• Check the convergence of the flow equations
• Check the mesh quality

• Try to understand the mechanisms behind the objective reduction
• Often leads to better designs and/or better defined optimisation problems!

Parallel CFD & Optimization Unit, School of Mechanical Engineering, NTUA (PCOpt/NTUA)

Prof. K.C. Giannakoglou, kgianna@mail.ntua.gr, Dr. E. Papoutsis-Kiachagias, vaggelisp@gmail.com

Additional topics covered through the tutorials under
$FOAM_TUTORIALS/incompressible/adjointOptimisationFoam

33

• Adjoint to turbulent flows
shapeOptimisation/sbend/turbulent/opt/BFGS/op1

• Effect of the update method
shapeOptimisation/sbend/laminar/opt/unconstrained

• Constrained optimisation
shapeOptimisation/naca0012/lift/opt/constraintProjection

• 3D, industrial-like cases
shapeOptimisation/motorbike

When in doubt about the case settings, you can consult the manual

