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Abstract 

 

A general framework for the modelling of porosity formation in multi-component alloys with 
more than one gaseous element is considered in the present contribution. It offers several 
advantages and accounts for: i) the partial pressure of any gaseous element composed of one or 
two chemical elements (e.g., H2, N2, CO, etc.); ii) the influence of the alloy composition on 
partial pressures through chemical activities; iii) the account of both trace gaseous elements and 
volatile solute elements such as zinc through appropriate mass balances. The set of equations 
describing multi-gas equilibrium at a given location is first described, with the construction of 
appropriate databases for aluminium-, copper- and iron-base alloys. These local state equations 
are coupled to a macroscopic resolution of the Darcy-mass balance equations governing the 
pressure drop in the mushy zone. This solution is based on an evolving fine volume grid 
superimposed to a finite element mesh used for the heat flow computations [1]. A few 
applications illustrate the effects of process and alloy parameters on the final porosity fraction. 

 
Introduction 

Porosity in castings is a major defect since it affects the mechanical properties [2-6], in particular 
the initiation of fatigue cracks [2-4]. Therefore, the reduction of porosity fraction and size, the 
control of porosity distribution and morphology are crucial for the optimization of fatigue 
behaviour of as-cast components. Porosity is the result of two concomitant mechanisms: (i) 
solidification shrinkage induces a suction and thus a liquid pressure drop in the mushy zone 
(Darcy’s law [7]), (ii) trace gaseous elements in the liquid being generally less soluble in the 
solid phase, solidification induces gas microsegregation in the remaining liquid part. Cavitation 
may occur in the mushy zone when the effective gas concentration in the liquid, l

gw , reaches the 

gas solubility, l*
gw . The solubility furthermore decreases with liquid pressure and temperature.  

In aluminium-base alloys, hydrogen is the only diatomic gas enough soluble to lead to porosity 
formation [8-10]. Hydrogen in aluminium alloys is due to air moisture decomposition 
(H2O→2H+O) and aluminium oxidation [11] (3H2O+2Al→Al2O3+3H2) and is also produced by 
the decomposition of moisture or grease covering tools immersed into the melt. In copper-base 
alloys, hydrogen, moisture, and sulphur dioxide are responsible of porosity formation [12], 
whereas this defect is due to hydrogen, nitrogen and carbon monoxide in iron-base alloys [13]. 
The combined effects of hydrogen and nitrogen in steel has already been studied [14,15]. Carbon 
solubility in copper-base alloys seems to be too low to form carbon monoxide [10]. As the 
affinity of the reaction of formation of FeO is higher than that of SO2 [16], SO2 is never formed 



in iron-base alloys. Some volatile solute elements (e.g., zinc) can also contribute to 
microporosity [17]. Several authors reported the effect of alloying elements on gas solubility in 
aluminium-, copper-, and iron-base alloys [11, 12, 14, 16]. 

The general framework of the present contribution is the formation of porosity in the presence of 
one or more gases, the solubility of which being dependent on several alloying elements. The 
basic conservation and thermodynamics equilibrium equations that govern porosity formation in 
the case of a multi-gas system in multi-component alloys are established in the first part. A 
realistic growth law for a pore constrained by the dendrite network is proposed in the second 
part. In the final part, this multi-gas approach is applied to the case of porosity formation in 
copper-base alloys. The impact on porosity fraction of the presence of H, S and O in solution in 
the alloy is studied for various solidification conditions. 

 
Multi-Gas and Multi-Component Approach 

The purpose of this part is not to describe again the equations that govern porosity formation in 
the case of one diatomic gas, g, (e.g., H2 in an aluminium-base alloy). These equations have been 
largely explained in previous papers [1,17]. In this part, a method for the extension of the 
approach to several gases composed of one or two chemical elements soluble in a multi-
component alloy is proposed. 

 
Gas Thermodynamics 

The gases responsible of porosity formation are generally composed of one or two chemical 
elements that can be solute elements of the alloy or not (see introduction). While Sievert’s law 
applies to diatomic gases, the more general case of a gas composed of one or several elements is 
handled through solubility products. The involved reactions for gases made of maximum two 
elements are: 

Formation of gas α (α = 1, ng):   
α α α

A A Bn A or n A + n B↔ α α α
A A Bn n n

α with α = A or A B  (1) 

There are ng gases contained in the gaseous phase and ns chemical elements involved in the 
formation of these gases (represented by capital letters).  α

An  indicates the stoechiometry of the 

element A in gas α (e.g., 2 for H in H2).  On the left hand side of these reactions, the elements 
are dissolved in the liquid phase. The solubility product for gas α formed from A and B elements 
is recalled here: 

( ) ( )
( )α α

A B

0
α 0 α

αn nl l* l l*
A A B B

p p -∆G
= exp = K T

RTf X f X

 
 
 

   (2) 

pα is the partial pressure of gas α, ( )0
α

∆G T  the variation of the standard Gibbs free energy for the 

reaction of formation of gas α, ( )α
K T  is the “constant” of the gas α formation reaction, l

Af  and 
l
Bf  are the activity coefficients of elements A and B, and l*

AX  and l*
BX  the molar fractions in the 

liquid phase of elements A and B, respectively, in equilibrium with the gas phase. The Gibbs free 
energy variation, ( )0

α
∆G T , can be expressed as a function of the standard enthalpy, ( )0

α
∆H T , and 

the standard entropy ( )0
α

∆S T (usually assumed constant in the temperature range): 

 
( ) ( ) ( )0 0 0G T = H T -T S Tα α α∆ ∆ ∆     (3) 

Eq. (2) can be transformed into the following relation: 
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with   ( ) ( )A B
0
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A B

S
A f f exp

R
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     and    
l

' l A
A * l

A

f
f =

f
.    

The activity coefficient of A,* l
Af , corresponding to the pure liquid metal, it follows that ' l

Af  is 

equal to 1 in the absence of solute elements. The parameter Aα has no physical meaning but will 
be called the gas formation coefficient.  

Similar expressions to relation (4) are obtained for other gases, and these expressions are the first 

ng dependency relations proposed between the (ng + ns) unknown variables l*
AX  (A = 1, ns), αp  

(α = 1, ng). The activity coefficient ratio' l
Af  is given by the following relationship [11]: 

 

S S 2e c +r cA S A S
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      (5) 

where S
Ae  and S

Ar  are the first- and second-order interaction coefficients of the solute element S 
on the gaseous element A, respectively. In this relation, the solute element concentrations, cs, are 
expressed in wt%. Interaction coefficients for several solute elements in various alloys (Al, Cu, 

Fe,…), as well as 0
α

∆H  and Aα can be found in the literature [11,12,14,16,18].  

A simple thermodynamic analysis [17] has shown that solute elements with a high vapour 
pressure (e.g., zinc) can contribute to the increase of the pore fraction in high melting point 
alloys (e.g., copper-base alloys). Relation (4) is also perfectly adapted to describe the 
transformation of such solute elements into a vapour phase. 

 
Gaseous Element Conservations 

The gas element conservation equation established in reference [17] for a diatomic gas in the 
presence of porosity can be easily extended to a multi-gas system. For each element A, one has: 

 ( ) pl l* l* o g
Ao l s A s s A A alloy A g

g A

g
ρ X = ρ 1- g X +ρ g k X + M n p

RT ∋
∑    (6) 

where l
AoX  and  l*

AX  are the nominal molar concentration and the solubility limit in the liquid 

phase, respectively, and kA is the partition coefficient of gaseous element A. ρl and ρs are the 
specific masses of the liquid and solid, respectively, while 〈ρ〉 is the average specific mass of the 
solid-liquid mixture in the absence of porosity. gs and gp are the volume fractions of solid and 
porosity, respectively, o

alloyM  is the molar mass of the alloy in the initial state (before 

solidification), T is the temperature and R the perfect gas constant. In this equation, the 
summation of the gas partial pressures is carried out for all the gases containing element A, with 
a weight given by the stoechiometry of element A in each gas. 

  

In the presence of porosity, Eqs (6) provide ns additional relationships between the unknown 

variables l* l* l*
A B N α λ

X , X , ..., X , p , ..., p and gp. Therefore, Eqs (4) and (6) provide ng+ns relations in 
which ng+ns+1 unknown variables are present, i.e., one equation is still missing. 

In the absence of porosity, relation (6) becomes: 



 

( )
l
Aol

A
l s s s A

ρ X
X

ρ 1- g +ρ g k
=       (7) 

 
Mechanical Equilibrium of a Pore 

An additional equation is provided by the mechanical equilibrium condition of a pore:  

p α λ l rp = p + ... + p = p +∆p      (8) 

where pp and pl are the pressures in the pore and in the surrounding liquid , respectively, while 
∆pr  is the Laplace contribution associated with the curvature of the pore: 

gl
r

2γ
∆p =

r
      (9) 

where γgl is the surface energy of the pore/liquid interface and r the radius of curvature of the 
pore.  Relation (8) introduces two unknown variables, pl and r (i.e., ng+ns+3 unknowns with 
ng+ns+1 equations), but two more equations are provided by: 

• The mass conservation equation coupled with Darcy’s law that relates the liquid pressure 
with the porosity fraction. This relation has been largely detailed in previous papers 
[1,17] and will not be repeated here. 

• A relationship between gp and r. For a spherical pore, this relationship is straightforward, 
while a simple model for a pore constrained to grow within a dendritic network is 
developed in the next section. 

In order for a pore to nucleate in the liquid, its initial radius of curvature, ro, must satisfy Eq. (9), 
i.e., the supersaturation, pα + … + pλ - pl, must be equal to the Laplace contribution. 

 
Solution 

The mass conservation equation coupled with Darcy’s law is solved using an evolving fine 
volume grid superimposed to a finite element mesh used for the heat flow computations [1]. The 
set of ng+ns+2 equations governing at a local scale the relationship gp(pl) in a multi-gas system is 
strongly non linear. In order to limit the computation time, these equations are solved for each 
grid of the mesh by one step of Newton-Raphton’s method. This is equivalent to deriving Eqs 

(4), (6) and (8) in order to obtain a linear system with respect to 
l* l*
A B α ldX , dX , ..., dp , dp ..., dpβ  

and dgp. 

 
Growth Law 

As the interface energy, γgl, is on the order of 1 Jm-2 and the pore curvature radius is equal to a 
few tens of micrometers, the curvature contribution (Laplace’s overpressure, Eq. (9)) cannot be 
neglected in Eq. (8) and strongly influences the pore fraction. While the relationship between gp 
and r is straightforward for spherical pores (i.e., gas porosity), a simple model for the curvature 
of a pore constrained to grow in a well developed dendritic network (i.e, shrinkage porosity) is 
derived in this section. 

  



   

Figure 1.  Regular stacking of dendrite arms, showing the space available for pores (rmax): 
hexagonal arms without impingement (left), and cylindrical arms with impingement (right). 

The left scheme of Fig. 1 is an illustration of a too simple geometrical solution that does not take 
into account secondary dendrite arms impingement. The present model considers a simplified 
3-dimensional network of cylindrical secondary dendrite arms and takes into account their 
impingement (right scheme in Fig. 1). Assuming that pores can grow in between the cylindrical 
arms, assumed to be infinite in length, the maximum radius of the pore is simply given by: 
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. 

As the liquid phase is assumed to completely wet the solid, the contact angle at the triple point 
(pore-solid-liquid) is zero. The relationship given by Eq. (10) is shown in Fig. 2, together with 
another relation, rmax = 0.5 λ2(1 - gs

0.5), that corresponds to the solution of the left geometry in 
Fig. 1. It appears that the new relation (14) seems more adapted to the modelling of shrinkage 
porosity. Indeed, with rmax = 0.5 λ2(1 - gs

0.5), max 2r λ  does not exceed 0.025 for sg 0.9≥ . Taking 

λ2 = 40 µm, rmax will be smaller than 1 µm, and ∆pr will be greater than 1.8 MPa. Therefore, 
pores will have almost no chance to grow if they do not nucleate before gs  = 0.9. Doing the same 
calculation with Eq. (10) (max 2r λ < 0.15 for gs > 0.9), the curvature contribution is on the order 
of 300 kPa during the last stage solidification, thus allowing shrinkage porosity formation. 
Eq. (10) will be retained for the simulations presented in the last part. 

 
Results 

The present porosity model has been applied to brass alloys, more specifically to a Cu-10%wtZn 
alloy. For the solidification path, the Scheil-Gulliver microsegregation model was used. The 
solidification range was assumed equal to 43 °C (no peritectic reaction was considered). The 
resolution of Darcy+mass balance equations is possible if solidification shrinkage is known [1]: 
the liquid and solid specific masses were assumed constant and equal to 7940 and 8960 kg/m3, 
respectively. 

 

In order to speed up the computations, an ideal one-dimensional directional casting was chosen. 
The casting velocity, v, and the thermal gradient, G, were equal to 0.01 m/s and 



500 °C/m, respectively. The simulation results deal with the porosity fraction for the stationary 
regime, showing the impact of hydrogen, moisture and sulphur dioxide on porosity fraction. 
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Figure 2. Representation of the maximum 
radius of a pore (normalized by the secondary 
dendrite arm spacing) growing in a mushy 
zone for the  two geometrical models shown in 
Fig. 1. 

 

Figure 3. Porosity fraction in Cu-10 wt%Zn 
for different gaseous element systems 
( l

HoX = 30 ppm (at), l
SoX = 0.8 % (at)and 

l
OoX = 20 ppm (at) if present). Two secondary 

dendrite arm spacings were tested, without and 
with account of solidification shrinkage. 

In Fig. 3, the contribution to porosity formation of various gaseous elements is represented for 
two secondary dendrite arm spacings, with and without shrinkage. It can be seen that dissolved 
H2, H2O and SO2 can have a concomitant effect on the microporosity level. The selected oxygen 
nominal concentration is low (20 ppm (at)) in order to avoid Cu2O precipitation in the liquid 
phase (see Cu-O phase diagram), a situation that the model is unable to handle if lOX  path is 
unknown. The chosen sulphur nominal concentration is high (0.8 % (at)), i.e., at least twice the 
concentration usually added to improve machinability. It is observed that the presence of 
hydrogen creates a significant amount of porosity (diamonds), but this amount is drastically 
increased with the presence of oxygen (formation of water vapour). This figure also shows that 
the presence of sulphur can produce porosity if no deoxidation step was employed before 
pouring. 

In Fig. 4, the porosity fraction is represented as a function of hydrogen and oxygen nominal 
concentrations for different secondary dendrite arm spacings, without and with account of 
solidification shrinkage, using the thermal gradient and isotherm speed mentioned before. 
Several thousand computations were made, but the presence of sulphur was not considered. In 
Figs 4(a) and (b), it is observed that, at high O and H nominal concentrations, the porosity 
fraction slightly decreases with the secondary dendrite arm spacing. At low gaseous element 
concentrations, the porosity level is larger for smaller λ2 values because the permeability is 
reduced [19] (i.e., the pressure drop is larger). This effect is apparently larger than the opposite 
one associated with the curvature contribution (i.e., higher ∆pr with smaller λ2). On the other 
hand, solidification shrinkage has a strong influence on the porosity level. This is confirmed in 
Fig. 4: (i) for high nominal concentrations of gaseous elements, the porosity fraction is 
significantly lower when the shrinkage is not account for, and (ii) the porosity fraction is zero at 
low gaseous element concentrations, whereas it is not zero when shrinkage is accounted for. 
These maps would allow the determination of the gaseous element nominal concentrations below 



which the porosity fraction will be lower than a given value. Of course, these concentrations 
strongly depend on the process and alloy parameters. 
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(a) λ2 = 50 µm, with shrinkage.  (b) λ2 = 25 µm, with shrinkage. 
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(c) λ2 = 50 µm, without shrinkage .  (d) λ2 = 25 µm, without shrinkage. 

Figure 4. Maps of the porosity fraction in Cu-10wt%Zn as a function of H and O nominal 
concentration and for different secondary dendrite arm spacings, without and with account of 
solidification shrinkage. 

 

Conclusion 

In this paper a general approach to model porosity in multi-component alloys for multi-gas 
systems has been detailed. An application to Cu-Zn has shown the influence of various gas 
elements, of the secondary dendrite arm spacing and of solidification shrinkage. The contribution 
of the vapour pressure of volatile solute elements such as zinc is detailed elsewhere [17]. This 
model is being validated on several aluminium alloys. 
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