
Abstract for the 4thOpenFOAM User Conference 2016, Cologne - Germany

 Performance Optimization of OpenFOAM on the new Intel®
Xeon Phi™ Processor

Ravi Ojha1, Prasad Pawar1, Nishant Agrawal1, Ambuj Pandey1
Paul Edwards2

 1 Tata Consultancy Services Ltd, Gateway Park, MIDC Road No#13, Andheri East, Mumbai, Maharashtra

400093, India {rav.ojha, prasad.pawar, nishant.agrawal, ambuj.pandey,}@tcs.com

2 Intel Corporation (UK) Ltd., Pipers Way, Swindon, SN3 1RJ, paul.m.edwards@intel.com

OpenFOAM* is a well-known and popular software package for solving partial differential equations
(PDE) and is used by industry, researchers and academia to solve variety of computational fluid dynamics
(CFD) problems. It comes with several different kinds of solvers for different PDEs, but also ships with a
framework to implement third-party solvers for custom PDEs. OpenFOAM uses a finite volume method
(FVM) and employs the Message Passing Interface (MPI) for communication; as of today it does not yet
support multi-threading.

Recent advances in parallel computing have enabled solving time-consuming problems in a reasonable

time frame or to tackle larger problems, that is, more detailed analysis of existing structures or

simulation of more complex and larger structures. Technologies include multicore CPUs with few but

powerful individual cores that strive to balance single-threaded and multi-threaded performance, and

GPUs that have a higher number of cores although less powerful and designed to work in lock-step with

all other cores executing the same instruction on different elements of the data sets.

Intel recently launched Knights Landing (KNL) based on their Many Integrated Core (MIC) Xeon Phi™

processor. Compared to the traditional multi-core systems, the cores of KNL are clocked at a lower

frequency. Unlike the earlier versions where coprocessors were used as PCIe accelerators, KNL is now

available as a bootable CPU. The latest hardware has an on-die Omni Path interconnect for high

bandwidth. The hardware also offers high bandwidth stacked die memory of 16GB with bandwidth of

over 400GBps.

This paper describes the work done to optimize the performance of OpenFOAM on the above mentioned

hardware by writing Advanced Vector Extensions 512 (AVX512) intrinsics. Analyzing the vectorization

report of our top hotspot function GaussSeidel revealed that the compiler was generating Peel and

Remainder loops because the trip count of the loop is unknown. Moreover analyzing the assembly code

in Intel® VTune™ showed that a few unnecessary instructions were getting generated as well. These gave

Abstract for the 4thOpenFOAM User Conference 2016, Cologne - Germany

us the motivation to write our own AVX512 intrinsics for doing the vectorization and achieving a 13%

overall runtime of our benchmark simulation.

Besides intrinsics, we present other optimization work on OpenFOAM which is now accepted in the

OpenFOAM main branch where we reduce the application startup time for large numbers of cores and

we reduced the peak memory usage by 15% in our benchmarks.

