
Abstract for the 6th ESI OpenFOAM User Conference 2018, Hamburg - Germany

In situ data analysis and visualization in OpenFOAM with
ParaView Catalyst

Simone Bnà[a], Mark Olesen[b], Andrew Bauer[c]

(a) Cineca, via Magnanelli 6/3, 40033, Casalecchio di Reno, Italy, +39-0516171938,
simone.bna@cineca.it

(b) ESI Gbmh, Einsteinring 24, 85609, Munich, Germany, +49-1719710149, mark.olesen@esi-
group.com

(c) Kitware Inc, Clifton Park, New York, US, andy.bauer@kitware.com

Introduction

It is well known that more and more time is spent during the simulation for I/O operations and

postprocessing. I/O is recognized to be the main bottleneck to achieve the Exascale computing, which is

up to 1000x faster than current Petascale systems [1]. The main cause can be identified in the

disproportion of the rate of change between memory and external storage and CPUs. With a such

limited I/O bandwidth and capacity, it is acknowledged that traditional 3-step workflows (pre-processing,

simulation, post-processing) are not sustainable in the exascale era. One approach to overcome the data

transfer bottleneck is through an in situ approach: the in situ approach moves some of the post-

processing tasks in line with the simulation code [2].

ParaView Catalyst [3] is an open-source data processing and visualization library that enables in situ data

analysis and visualization. Built on top of and designed to interoperate with the standard visualization

toolkit VTK, Catalyst enables simulations to perform analysis, produce output data and visualize

intermediate results during a running simulation concurrently [2].

OpenFOAM [4] is a well-known open-source CFD software package used by engineers and scientists from

both the commercial and academic industries. The desire to apply in situ techniques to OpenFOAM using

open-source softwares led to the development of a plugin based on the ParaView Catalyst library.

Exploration of in situ techniques for OpenFOAM could have different purposes and goals:

 provide OpenFOAM users early visual feedback of their current simulation jobs from the earliest
stages of the computation;

 reduce the amount of data stored as early and interactive feedback could help in tuning the
frequency, resolution and format of saved data;

 computational steering connections that let the scientist to analyse the results on the fly and
changing of the analysis pipelines interactively, through user feedback;

mailto:simone.bna@cineca.it

Abstract for the 6th ESI OpenFOAM User Conference 2018, Hamburg - Germany

 allow for scaling of heavy postprocessing operation that would benefit of the same scaling
available for the simulation;

 develop analysis pipelines using C++ or Python that are executed along side the simulation run, in
the same address space;

 promote adoption of web based presentation of simulation results for sharing amongst work
groups by embedding production of visual artefacts within the batch simulation jobs (ParaView
Cinema).

Architectural design

The Catalyst plugin [5] is implemented in OpenFOAM as a FunctionObject named catalystFunctionObject.

This implies that the functionalities can be simply plugged in by adding it in the controlDict file. This

function object is called many times according to the frequency specified by the user in the catalyst

dictionary.

The catalystFunctionObject owns a coprocessor and a list of inputs. The coprocessor is the interface

between the simulation and Catalyst and it is implemented in the catalystCoprocess class. The roles of

the coprocessor are:

 initialize the Catalyst library

 load/reset the Catalyst scripts (e.g. Python pipelines)

 query Catalyst to determine if any analysis is required to be run for the current timestep

 an adaptor backend that maps the OpenFOAM data structures to Catalyst, which uses a VTK data

model

 finalize the Catalyst library

Inputs are instead the sources of the VTK pipelines to be processed by ParaView Catalyst. The available

inputs in the plugin are (see Figure 2):

 fvMeshInput: an input (source) from fvMesh regions

 faMeshInput: an input (source) from faMesh regions

 cloudInput: an input (source) from clouds (lagrangian)

Since each input works with different data types, a specific adaptor backend for the coprocessor has

been developed:

 fvMeshAdaptor: the backend for fvMeshInput; the output is a multi-block dataset with one

block per region. Each region block contains up to two blocks corresponding to the internal

(volume) mesh (block 0) and the boundary (block 1), which are further divided into sub-blocks

for each patch.

Abstract for the 6th ESI OpenFOAM User Conference 2018, Hamburg - Germany

 faMeshAdaptor: the backend for faMeshInput. The output is a multi-block dataset with one

block per area mesh. Each block is further divided in pieces for each processor.

 CloudAdaptor: the backend for cloudInput for converting an OpenFOAM cloud to vtkPolyData.

The output is a multi-block dataset with one block per cloud with pieces from each processor.

The inputs are specified by the user in the Catalyst dictionary. For each input the user can also specify its

options, e.g. the fields and the regions for fvMeshInput, see the snippet code in Figure 1.

The Catalyst Python scripts are specified in the catalyst dictionary too. The Catalyst Python scripts can be

generated automatically using the ParaView GUI with the Catalyst Script Generator plugin enabled [6].

An example of a rendering pipeline result for a laser melting simulation is shown in Figure 3.

// ParaView Catalyst function object for OpenFOAM (-*- C++ -*-)

catalyst

{

 #includeEtc "caseDicts/insitu/catalyst/catalyst.cfg"

 scripts

 (

 "<system>/scripts/slice.py"

);

 inputs

 {

 region

 {

 // All regions

 regions (".*");

 internal true;

 boundary false;

 // Selected fields (words or regex)

 fields (T U p);

 }

 // Solid walls only

 walls

 {

 internal false;

 regions (heater "(?i).*solid");

 patches ("(?i).*solid_to.*" "heater.*(Air|Water)");

 fields (T);

 }

 }

}

Figure 1: example of a catalyst dictionary for fvMeshInput

Abstract for the 6th ESI OpenFOAM User Conference 2018, Hamburg - Germany

Figure 2: Structure of the inputs available in the Catalyst plugin

Figure 3: Laser melting rendering generated using the Catalyst plugin

region N

internal

•piece 0

•piece 1

•...

•piece N

boundary

•piece 0

•piece 1

•...

•piece N

area N

•piece 0

•piece 1

•...

•piece N

cloud N

•piece 0

•piece 1

•...

•piece N

Abstract for the 6th ESI OpenFOAM User Conference 2018, Hamburg - Germany

References

[1] Klasky, S., et al.: In Situ Data Processing for Extreme Scale Computing. In: Proc. Conf. Scientific

Discovery through Advanced Computing Program (SciDAC '11), (2011)

[2] Ayachit, U., et al.: Paraview catalyst: enabling in situ data analysis and visualization. In: Proceedings of

the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, pp.

25–29, ACM (2015)

[3] Kitware: ParaView (2002–2016). http://www.paraview.org

[4] Esi-CFD: OpenFOAM (2018). https://www.openfoam.com/

[5] Esi-CFD - Cineca: Catalyst (2018). https://develop.openfoam.com/Community/catalyst

[6] Kitware: ParaView Catalyst User's Guide.

https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

http://www.paraview.org/
https://www.openfoam.com/
https://develop.openfoam.com/Community/catalyst
https://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

