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The efficient propulsion of the natural swimmers involves complex Fluid-Structure Interactions 
(FSI) between their highly deformable body and the wake generated by upstream obstacles, 
especially during the passive swimming phase. The swimming fishes often synchronize their 
body deformation profile with the oncoming wake vortices in order to optimize the swimming 
efficiency by applying a control forcing. Structurally, the fish body is often modeled as a free-free 
or cantilever beam with a travelling wave along the body, representative of their self-controlled 
muscle activity [1]. Such a bio-inspired configuration - a flexible flapper situated downstream of 
a cylinder - has significant potential in flow energy harvesting [2], and can also be used as an 
active vorticity control mechanism [3]. In these contexts, the flow-induced vibration of a 
cantilever beam has been studied by several groups [4] to understand the effects of different 
structural parameters, such as the flapper length, flexibility, mass-ratio among many other 
design parameters. However, the effects of different upstream bluff-body shapes and the 
relative position of the flapper on the nonlinear dynamical behavior of this FSI system remain 
largely unexplored in the literature. There is also a lack of understanding on the implications of 
different dynamical regimes of this system on the energy harvesting potential and the life of the 
harvester. A thorough understanding of the underlying vortex interactions will enable us to 
tune the vortex-shedding frequency in connection with the natural frequency of the flapper to 
maximize the power output. The present study aims to take up these investigations. 

Computational Methodology 

The high-fidelity FSI simulations can be based on either monolithic or partitioned approach [5]. 
In the monolithic approach, both the structural and fluid governing equations are solved in a 
single mathematical and computational framework with implicit interfacial conditions. On the 
other hand, two different existing solvers are coupled in the partitioned approach to solve the 
two separated sub-systems of fluid and solid models. Again, in the partitioned approach, there 
exist two different coupling strategies [5]: weak and strong coupling. Although the weak 
coupling could be an affordable choice in terms of the associated computational cost, it can 
lead to a time-lagged solution and numerical instabilities especially when the fluid and solid 
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densities are comparable for a very flexible structure with large deformation, leading to 
unphysical instabilities. On the contrary, the strong coupling strategy demands solving the sub-
systems multiple times until the convergence criterion at the interface is satisfied, thus 
ensuring a better accuracy. In this study, we have adopted a partitioned strong-coupling 
strategy available in the fsiFOAM [6] solver of OpenFOAM. 

Governing Equations 

The FSI framework of fsiFOAM [6] is composed of an incompressible Navier-Stokes (N-S) solver, 
strongly coupled by a partitioned approach with a nonlinear elastic structural model. The 
viscous flow-field, governed by an incompressible N-S equation, can be cast into arbitrary 
Lagrangian-Eulerian (ALE) formulation [7] as 

∇. 𝒖⃗⃗ = 0,  1 
𝜕𝒖⃗⃗ 

𝜕𝑡
+ [𝒖⃗⃗  −  𝒖⃗⃗ 𝑚). ∇]  𝒖⃗⃗   =  −∇𝑝/𝜌 + 𝜈 ∇2𝒖⃗⃗  .  2 

Here, 𝑢⃗  is the flow velocity, 𝑢⃗ 𝑚 is the grid point velocity, 𝑝 is the pressure, 𝜌 is the fluid density 
and 𝜈 is the kinematic viscosity. The flexible flapper is modelled as an elastic continuum with its 
leading-edge restrained as a fixed support. Mathematically, conservation of linear momentum 
is given by 

𝜕

𝜕𝑡
∫𝜌𝑠𝒗 𝑑𝑉 =  ∮𝒏. 𝝈 𝑑Γ + ∫ 𝜌𝑠𝒃 𝑑𝑉   ,  3 

where, 𝑉 is the volume of the flapper bounded by the surface Γ with unit normal 𝒏, 𝒗 is the 
velocity vector, 𝝈 is the Cauchy stress tensor, 𝜌𝑠 is the density of the material of the structure 
and 𝒃 is the body force perunit mass. Assuming large strain, the material behaviour of the 
flapper has been modelled using St. Venant-Kirchhoff hyper-elasticity theory. The linear 
momentum equation can therefore be written in terms of the second Piola-Kirchhoff stress 

tensor (S) as  𝝈 =
1

𝐽
𝑭. 𝑱. 𝑭𝑇 ;  𝑭 = 𝑰 + 𝚫𝒘 is the deformation gradient, 𝑰 is the identity tensor

and w is the deformation vector. According to the constitutive model for the St. Venant-

Kirchhoff material, S can be designed as 𝑺 = 𝜆(𝑡𝑟 𝑬)𝐼 + 2𝜇𝑬, where 𝑬 =
1

2
(𝑭𝑇𝑭 − 𝐼) and

𝜆 and 𝜇 are Laḿe constants (‘𝑡𝑟’ denotes the trace of a matrix). 

Numerical Algorithms 

The incompressible N-S equation has been discretized on a moving grid with a Laplacian mesh 
motion strategy [6]. The flow solver uses a second order accurate spatial discretization and the 
temporal discretization is performed using a second order implicit backward differencing 
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scheme. A variable time stepping technique based on a maximal Courant number has been 
adopted. The pressure velocity coupling is implemented through PISO (Pressure Implicit with 
Splitting of Operator) algorithm [7]. The absolute error tolerance criteria for pressure and 
velocity are set to 10-6. The structural part has been solved by a large strain elastic stress 
analysis solver based on Lagrangian displacement formulation [8]. The absolute tolerance 
criterion of the structural solver is also taken to be 10-6. A quasi-Newton coupling algorithm 
with an approximation for the inverse of the residual's Jacobian matrix from a least-square 
model (IQN-ILS) [6] has been adopted in the strong coupling method. 

Computational Domain and Mesh 

A two-dimensional rectangular computational domain of size 37.5Dx30D, as shown in Fig. 1(a), 
has been considered through a domain convergence study. The dimensions of the domain are 
shown in terms of the diameter of the cylinder D.  Simulations are performed for varying gap 
(G), length (L) and thickness (T) of the structure. The results of the domain convergence study 
with three different domain sizes of 35Dx25D, 37.5Dx30D, 40Dx35D are shown in Fig. 2(a).  

(a) Domain (b) Structured mesh

Figure 1: Computational domain (not to scale) and mesh. 

(a) Domain convergence (b) Mesh convergence

Figure 2: Domain and mesh convergence 
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Standard boundary conditions have been applied: a zero pressure gradient and a constant free-
stream at the inlet; a zero velocity gradient and atmospheric pressure condition at the outlet; 
no slip and zero normal pressure gradient condition on the horizontal walls and traction 
boundary condition on the flexible flapper. The computational domain is discretized using 
structured grids as shown in Fig. 1(b). A mesh, containing 158 x 103  grid points, has been 
finalized through a grid independence test by comparing the results of three different mesh 
sizes, having 141 x 103, 158 x 103 and 181 x 103 grid points (Mesh 1, Mesh 2 and Mesh 3, 
respectively) at Re = 500; see Fig. 2(b). 

Validation of the FSI Solver 

The present FSI solver has been quantitatively validated with the benchmark case of a flexible 
splitter plate attached with a rigid cylinder, presented in the ‘FSI2’ case by Turek and Hron [9]. 
The mesh, chosen after grid independence study at Re = 500, has been used for the validation 
case at a lower Re = 100. The vertical tip displacement time-histories, representing a self-
sustained periodic oscillatory state of the flexible plate, obtained from the present FSI 
simulations show excellent match with the results presented in [9].  

(a) Quantitative validation (b) Qualitative validation

Figure 3: Computational domain (not to scale) and mesh. 

Results  

The parameters considered in this study are as follow: structure to fluid density ratio 𝜇 =
𝜌𝑠

𝜌𝑓
 =1; 

non-dimensional Young’s modulus 𝐸̅ = 𝐸/(𝜌𝑓 ∗ 𝑢𝑚
2 ) = 5600; non-dimensional length L/D = 3; 

Reynolds number Re =500; the non-dimensional thickness of the filament T/D = 0.10. E is the 
dimensional Young's modulus of the structure; 𝑢𝑚is the mean uniformvelocity at the inlet. Non-
dimensional gap between the cylinder and the filament G/D and transverse of the flexible 
flapper is varied in different cases.  Two representative cases for upstream circular and elliptical 
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bluff bodies are presented here considering G/D = 2. The circular cylinder-flapper system is 
observed to generate a 2P vortex-street in the wake, as shown in Fig. 4(a). The body-bound 
vortices in the intermediate region of the bluff body and the flapper mildly deforms the 
extended shear layers of the bluff body, which contributes to a weak presence of quasi-
periodicity in the response; the conclusive dynamical proofs for the existence of quasi-

periodicity is beyond the scope of this document and will be shown in the presentation. The 
corresponding displacement envelope of the flexible flapper is presented in Fig. 4(b) and shows 
an organized pattern. 

Figure 4: (a) Near Field Wake and    (b) the displacement envelope of the flapper for the circular cylinder case. 

On the other hand, in case of an elliptical bluff body, the rebound vortices are more powerful in 
the gap region. As a result, the shear layers are seen to be deformed significantly, thus 
triggering aperiodicity in the flapper response through stronger interactions. This can be seen 
from the near-field wake and the corresponding displacement envelop of the flapper, 
presented in 5(a) and 5(b), respectively. A detailed investigation has been carried out using 
robust time-series analysis tools to show the presence of aperiodicity in this case and will be 
demonstrated in the presentation. 
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Figure 5: (a) Near-field wake and (b) the displacement envelope of the flapper for the elliptical cylinder case. 

The present investigation of this FSI model with fsiFOAM solver reveals distinctly different 
dynamical regimes of periodicity and aperiodicity for different bluff-body shapes and different 
relative positions of the flexible flapper. The implications of these different dynamics on the 
energy harvesting potential are presently being investigated by the authors and will be 
presented in the conference. Since the solver achieved a better accuracy over the mesh 
discretisation [6], the more accurate results give more accurate dynamics in this kind of high- 
end computing. Though all simulations here are run in serial, the solver is designed for parallel 
processing and faster simulations, which are yet to be evaluated in our work. 

References: 

[1] S. Ramananarivo, R. Godoy-Diana, B. Thiria, Passive elastic mechanism to mimic fish-muscle action in
anguilliform swimming, Journal of The Royal Society Interface 10 (88) (2013) 20130667.

[2] Y. Yu, Y. Liu, Flapping dynamics of a piezoelectric membrane behind a circular cylinder, Journal of
Fluids and Structures 55 (2015) 347-363.



7 

[3] R. Gopalkrishnan, M. S. Triantafyllou, G. S. Triantafyllou, D. Barrett, Active vorticity control in a shear
flow using a flapping foil, Journal of Fluid Mechanics 274 (1994) 1-21.

[4] Y. Lau, R. So, R. Leung, Flow-induced vibration of elastic slender structures in a cylinder wake, Journal
of Fluids and Structures  19 (8) (2004) 1061-1083.

[5] J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, J. Vierendeels, Performance of partitioned
procedures in fluid-structure interaction, Computers & Structures 88 (7-8) (2010) 446{457.

[6] Ž Tuković,,A. Karać, P. Cardif, H. Jasak, A. Ivanković, OpenFOAM finite volume solver for fluid-solid
interaction, Transactions of FAMENA 42 (3) (2018) 1-31.

[7] J. H. Ferziger, M. Perić, Computational methods for fluid dynamics, vol. 3, Springer, 2002.

[8] P. Cardif, Ž Tuković, H. Jasak, A. Ivanković, A block-coupled finite volume methodology for linear
elasticity and unstructured meshes, Computers & Structures 175 (2016) 100-122.

[9] S. Turek, J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an
elastic object and laminar incompressible flow, in Fluid-Structure Interaction, Springer, 371-385, 2006.


