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1. Computational fluid dynamics and machine learning

Computational fluid dynamics (CFD) simulations are an integral part of the work of
engineers in industry and academia. In recent years, supplementing CFD simulations
with data from different sources has seen rising popularity and demand. However,
the idea of  incoporating data  into simulations is  not  new at  all.  Instead,  it  is  a
necessity. The numerical solution of transport equations requires the knowledge of
material properties like viscosity, molecular diffusivity, or thermal conductivity. In
combustion  simulations  involving  tens  or  hundreds  of  chemical  species,  it  is  a
common practice to create and use look-up tables for reaction properties. In the
field of turbulence modeling, there is no model that does not rely on a multitude of
empirical coefficients or blending functions that are often determined based on data
coming from high-fidelity simulations or experiments. The genuinely new character
of recent developments lies in the complexity of data-based models and the extent
to which data is harvested.

Data can come from a variety of sources, and it can come in a multitude of forms.
CFD simulations create data as they compute and write field or surface data for
velocity,  pressure,  or  temperature.  Moreover,  simulations  also  create  secondary
runtime data like residuals, required iterations, adjusted time steps, memory usage,



or parallel efficiency. Sometimes, information is only available implicitly in the form
of an environment1 that we can manipulate and observe. All of the aforementioned
data may be used to create data-driven CFD workflows with the ultimate goal of
creating more accurate, more efficient models. The field concerned with the creation
of mathematical models based on sample data is called machine learning (ML).

Several factors have led to the explosion of interest in ML and CFD over the past
years.  Firstly,  the  strongly  increasing  compute  power  and  the  vast  amounts  of
complex data demand similarly sophisticated tools to analyze and leverage such
data. Secondly, figure 1 indicates a strong correlation between software releases
with significant ML support according to nowadays standards, the popularity of ML in
general, and the academic throughput in terms of research articles dealing with the

1 For the meaning of evironment in the context of reinforcement learning refer to 
https://en.wikipedia.org/wiki/Reinforcement_learning

Figure  1:  Popularity  of  the  search  terms  “machine  learning”,
“Tensorflow”, and “PyTorch” over the last nine years according to
Google  trends  (https://trends.google.de/trends/).  The  number  of
articles per year corresponds to the number of  search results  on
ScienceDirect  for  the  query  "computational  fluid  dynamics  and
machine  learning".  The  dashed  vertical  lines  indicate  software
releases introducing noteworthy support for deep learning.



combination of CFD and ML. Note that the number of articles in figure 1 is certainly
too high and may be seen as an upper bound. However, more fine-grained studies
show  a  similar  trend;  see  chapter  2  in  [1].  Especially  the  open-source  libraries
Tensorflow and PyTorch have become extremely popular due to their ease of use
and feature-richness.

Coupling  CFD and  ML  models  may  be  categorized  according  to  the  three  main
branches of ML: supervised, unsupervised, and reinforcement learning. An overview
of the present literature body in these categories may be found in [1] for CFD and
ML,  in  [2]  for  fluid  dynamics  in general  and ML,  and in  [3]  specifically  for  fluid
dynamics and reinforcement learning. In the following, we list potential applications
of each learning type in CFD. The examples are intentionally detailed and diverse
with the hope to spark ideas in the reader’s mind for utilization in her or his field of
interest.

Supervised learning is  undoubtedly  the field  with  the largest  potential  to  create
models with immediate impact. Typical ML algorithms used in unsupervised learning
are neural  networks,  decision trees,  or polynomials.  Supervised learning may be
used to create

• wall  functions for LES or RANS simulations based on DNS or experimental
data,

• more realistic boundary conditions for velocity and other fields based on prior
simulations or experimental data,

• a classification model to infer the stability regime of particle trajectories,

• a curvature model that computes the curvature based on the volume fraction
field in a volume-of-fluid simulation with surface tension,

• rheological  models  based  on  simulation  approaches  operating  below  the
continuum-mechanical scale or rheometer data,

• improved correlations for lift, drag, mass or heat transfer, enhancement, or
effective reaction kinetics in Euler-Lagrange-type simulations.

Unsupervised learning deals  with  two kinds  of  problems,  namely,  dimensionality
reduction and clustering. Typical algorithms employed for dimensionality reduction
are proper orthogonal decomposition (PCA), dynamic mode decomposition (DMD), or



auto-encoders.  Frequently  used  clustering  algorithms  are  K-means  or  Gaussian
mixture models. Unsupervised learning may be used to

• find coherent structures in turbulent flows,

• create reduced-order models for the transient drag acting on a car,

• find faulty simulations in parameter studies with hundreds or thousands of
parameter variations,

• identify conditions in which a solver performs particularly well or bad.

Among the three main learning types, reinforcement learning is probably the one
promising  the  most  astonishing  and  impactful  models.  Combined  with  CFD
simulations, reinforcement learning can be used to

• reduce the drag acting on a car by means of active flow control,

• decrease the load on an airfoil by active flow control,

• perform direct  shape  optimization  to  enhance  the  performance  of  a  heat
exchanger,

• adjust solution control parameters of a simulation to accelerate the numerical
solution.

For some of the examples mentioned before, the reader might have a good idea of
how to create and use a data-driven model. For other examples, the concept might
be rather  vague or  completely  alien.  Even if  the mathematical  modeling idea is
clear,  there  might  still  be  some  lack  of  knowledge  about  the  exact  set-up  and
implementation. This contribution aims to clarify the workflow by providing start-to-
end  examples  for  different  scenarios,  including  software  requirements,  data
processing, data analysis, as well as model creation, assessment, and deployment.

2. OpenFOAM and PyTorch

PyTorch is a library specialized in neural networks that was first released in 2016 by
Facebook. However, the roots of PyTorch date back to the early 2000s when the
Torch  library  was  initially  released.  The  primary  purpose  of  both  libraries  is  to
provide  the  user  with  N-dimensional  arrays  and  array  operations  that  can  be
performed on different processing units like CPUs and GPUs. Another characteristic
that both libraries share is the separation into backend and frontend. The backend



implements low-level operations, while the frontend facilitates the interaction with
the  library.  In  contrast  to  its  predecessor,  the  backend  of  PyTorch  is  mostly
implemented  in  C++  instead  of  C,  and  Python  has  replaced  Lua  as  the  main
frontend  language. Since  version  1.5,  PyTorch  also  has  a  stable  C++ frontend,
making it an ideal candiate to integrate supervised or unsupervised ML models into
OpenFOAM  solvers.  Moreover,  OpenFOAM’s  run  time  selection  mechanism  and
PyTorch’s  neural  network  module  provide  an  ideal  environment  for  the
implementation of reinforcement learning applications.  Considering that Python is
currently the language of choice for data analysis and visualization, PyTorch also
comes with built-in support to create models via Python and to deploy them in C++
environments.  Another  benefit  of  combining  PyTorch  and  OpenFOAM  is  the
possibility to perform mixed-precision operations on CPUs and GPUs at run time.
This  ability  may be used to  exploit  CPU and GPU,  for  example,  to  offload  post-
processing tasks to the GPU. 

3. Examples for data-driven CFD workflows

The primary value in this contribution lies in the detailed start-to-end examples,
including  step-by-step  guidance  and  source  code  examples.  First,  we  provide
instructions  to  set-up  a  suitable  environment  for  jointly  using  OpenFOAM  and
PyTorch. Second, an example of supervised learning from [1] to create high-fidelity
reference data is examined in detail.  Thereafter, we touch on examples for each
learning type:

• The so-called high-Schmidt number problem makes it extremely challenging
to resolve species concentration boundary layers. Insufficient mesh resolution
may  lead  to  unphysical results  or  to  numerical  instabilities  if  the
concentration is  coupled to the fluid flow [5,  6].  We present an ML-based
model  to  approximate  the  boundary  layer  with  high  accuracy  even if  the
boundary layer is much smaller than the cell size [4].

• Raw turbulent  flow data  may be  hard to  comprehend visually  due to  the
chaotic nature of turbulence. We demonstrate how to employ  POD to shed
some light into the darkness.

• The coupling of pressure and velocity is a challenging step in the solution of
the momentum equation. The challenge is even greater in multiphase flow
solvers like interface [5, 6, 7] or front-tracking approaches [8] and results in
long run times or  numerical  instabilities.  We explore  how a reinforcement
learning agent may be used to adjust solution control parameters.



Finally,  we  provide  an  overview of  best  practices  and  an  outlook  on  upcoming
applications.
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