
Creating data-driven CFD workflows using
OpenFOAM and PyTorch

Andre Weiner 1 , Chiara Pesci2, Tomislav Marić3,
Dieter Bothe4

1Technical University of Braunschweig, Institute of Fluid Mechanics, Braunschweig,
Germany, a.weiner@tu-braunschweig.de

2Engineering System International GmbH, Neu-Isenburg, Germany, chiara.pesci@esi-
group.com

3Technical University of Darmstadt, Mathematical Modeling and Analysis, Darmstadt,
Germany, maric@mma.tu-darmstadt.de

4Technical University of Darmstadt, Mathematical Modeling and Analysis, Darmstadt,
Germany, bothe@mma.tu-darmstadt.de

1. Computational fluid dynamics and machine learning

Computational fluid dynamics (CFD) simulations are an integral part of the work of
engineers in industry and academia. In recent years, supplementing CFD simulations
with data from different sources has seen rising popularity and demand. However,
the idea of incoporating data into simulations is not new at all. Instead, it is a
necessity. The numerical solution of transport equations requires the knowledge of
material properties like viscosity, molecular diffusivity, or thermal conductivity. In
combustion simulations involving tens or hundreds of chemical species, it is a
common practice to create and use look-up tables for reaction properties. In the
field of turbulence modeling, there is no model that does not rely on a multitude of
empirical coefficients or blending functions that are often determined based on data
coming from high-fidelity simulations or experiments. The genuinely new character
of recent developments lies in the complexity of data-based models and the extent
to which data is harvested.

Data can come from a variety of sources, and it can come in a multitude of forms.
CFD simulations create data as they compute and write field or surface data for
velocity, pressure, or temperature. Moreover, simulations also create secondary
runtime data like residuals, required iterations, adjusted time steps, memory usage,

or parallel efficiency. Sometimes, information is only available implicitly in the form
of an environment1 that we can manipulate and observe. All of the aforementioned
data may be used to create data-driven CFD workflows with the ultimate goal of
creating more accurate, more efficient models. The field concerned with the creation
of mathematical models based on sample data is called machine learning (ML).

Several factors have led to the explosion of interest in ML and CFD over the past
years. Firstly, the strongly increasing compute power and the vast amounts of
complex data demand similarly sophisticated tools to analyze and leverage such
data. Secondly, figure 1 indicates a strong correlation between software releases
with significant ML support according to nowadays standards, the popularity of ML in
general, and the academic throughput in terms of research articles dealing with the

1 For the meaning of evironment in the context of reinforcement learning refer to
https://en.wikipedia.org/wiki/Reinforcement_learning

Figure 1: Popularity of the search terms “machine learning”,
“Tensorflow”, and “PyTorch” over the last nine years according to
Google trends (https://trends.google.de/trends/). The number of
articles per year corresponds to the number of search results on
ScienceDirect for the query "computational fluid dynamics and
machine learning". The dashed vertical lines indicate software
releases introducing noteworthy support for deep learning.

combination of CFD and ML. Note that the number of articles in figure 1 is certainly
too high and may be seen as an upper bound. However, more fine-grained studies
show a similar trend; see chapter 2 in [1]. Especially the open-source libraries
Tensorflow and PyTorch have become extremely popular due to their ease of use
and feature-richness.

Coupling CFD and ML models may be categorized according to the three main
branches of ML: supervised, unsupervised, and reinforcement learning. An overview
of the present literature body in these categories may be found in [1] for CFD and
ML, in [2] for fluid dynamics in general and ML, and in [3] specifically for fluid
dynamics and reinforcement learning. In the following, we list potential applications
of each learning type in CFD. The examples are intentionally detailed and diverse
with the hope to spark ideas in the reader’s mind for utilization in her or his field of
interest.

Supervised learning is undoubtedly the field with the largest potential to create
models with immediate impact. Typical ML algorithms used in unsupervised learning
are neural networks, decision trees, or polynomials. Supervised learning may be
used to create

• wall functions for LES or RANS simulations based on DNS or experimental
data,

• more realistic boundary conditions for velocity and other fields based on prior
simulations or experimental data,

• a classification model to infer the stability regime of particle trajectories,

• a curvature model that computes the curvature based on the volume fraction
field in a volume-of-fluid simulation with surface tension,

• rheological models based on simulation approaches operating below the
continuum-mechanical scale or rheometer data,

• improved correlations for lift, drag, mass or heat transfer, enhancement, or
effective reaction kinetics in Euler-Lagrange-type simulations.

Unsupervised learning deals with two kinds of problems, namely, dimensionality
reduction and clustering. Typical algorithms employed for dimensionality reduction
are proper orthogonal decomposition (PCA), dynamic mode decomposition (DMD), or

auto-encoders. Frequently used clustering algorithms are K-means or Gaussian
mixture models. Unsupervised learning may be used to

• find coherent structures in turbulent flows,

• create reduced-order models for the transient drag acting on a car,

• find faulty simulations in parameter studies with hundreds or thousands of
parameter variations,

• identify conditions in which a solver performs particularly well or bad.

Among the three main learning types, reinforcement learning is probably the one
promising the most astonishing and impactful models. Combined with CFD
simulations, reinforcement learning can be used to

• reduce the drag acting on a car by means of active flow control,

• decrease the load on an airfoil by active flow control,

• perform direct shape optimization to enhance the performance of a heat
exchanger,

• adjust solution control parameters of a simulation to accelerate the numerical
solution.

For some of the examples mentioned before, the reader might have a good idea of
how to create and use a data-driven model. For other examples, the concept might
be rather vague or completely alien. Even if the mathematical modeling idea is
clear, there might still be some lack of knowledge about the exact set-up and
implementation. This contribution aims to clarify the workflow by providing start-to-
end examples for different scenarios, including software requirements, data
processing, data analysis, as well as model creation, assessment, and deployment.

2. OpenFOAM and PyTorch

PyTorch is a library specialized in neural networks that was first released in 2016 by
Facebook. However, the roots of PyTorch date back to the early 2000s when the
Torch library was initially released. The primary purpose of both libraries is to
provide the user with N-dimensional arrays and array operations that can be
performed on different processing units like CPUs and GPUs. Another characteristic
that both libraries share is the separation into backend and frontend. The backend

implements low-level operations, while the frontend facilitates the interaction with
the library. In contrast to its predecessor, the backend of PyTorch is mostly
implemented in C++ instead of C, and Python has replaced Lua as the main
frontend language. Since version 1.5, PyTorch also has a stable C++ frontend,
making it an ideal candiate to integrate supervised or unsupervised ML models into
OpenFOAM solvers. Moreover, OpenFOAM’s run time selection mechanism and
PyTorch’s neural network module provide an ideal environment for the
implementation of reinforcement learning applications. Considering that Python is
currently the language of choice for data analysis and visualization, PyTorch also
comes with built-in support to create models via Python and to deploy them in C++
environments. Another benefit of combining PyTorch and OpenFOAM is the
possibility to perform mixed-precision operations on CPUs and GPUs at run time.
This ability may be used to exploit CPU and GPU, for example, to offload post-
processing tasks to the GPU.

3. Examples for data-driven CFD workflows

The primary value in this contribution lies in the detailed start-to-end examples,
including step-by-step guidance and source code examples. First, we provide
instructions to set-up a suitable environment for jointly using OpenFOAM and
PyTorch. Second, an example of supervised learning from [1] to create high-fidelity
reference data is examined in detail. Thereafter, we touch on examples for each
learning type:

• The so-called high-Schmidt number problem makes it extremely challenging
to resolve species concentration boundary layers. Insufficient mesh resolution
may lead to unphysical results or to numerical instabilities if the
concentration is coupled to the fluid flow [5, 6]. We present an ML-based
model to approximate the boundary layer with high accuracy even if the
boundary layer is much smaller than the cell size [4].

• Raw turbulent flow data may be hard to comprehend visually due to the
chaotic nature of turbulence. We demonstrate how to employ POD to shed
some light into the darkness.

• The coupling of pressure and velocity is a challenging step in the solution of
the momentum equation. The challenge is even greater in multiphase flow
solvers like interface [5, 6, 7] or front-tracking approaches [8] and results in
long run times or numerical instabilities. We explore how a reinforcement
learning agent may be used to adjust solution control parameters.

Finally, we provide an overview of best practices and an outlook on upcoming
applications.

Acknowledgements

Andre Weiner and Dieter Bothe thank the German Research Foundation (DFG) for
funding received within the priority program SPP1740 “Reactive bubbly flows” under
the grant BO1879/13-2.

References

[1] A. Weiner: Modeling and simulation of convection-dominated species transfer at
rising bubbles, Ph.D. Thesis, TU Darmstadt, 2020

[2] S. L. Brunton, B. R. Noack, P. Koumoutsakos: Machine learning for fluid danamics,
Annual Review of Fluid Mechanics, 52, 477-508, 2020

[3] P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, E. Hackem: A review on
deep reinforcement learning for fluid mechanics, arXiv:1908.04127, 2019

[4] A. Weiner, D. Hillenbrand, H. Marschall, D. Bothe: Data driven subgrid scale‐ ‐
modeling for convection dominated concentration boundary layers‐ , Chemical
Engineering & Technology, 42 (7), 1349-1356, 2019

[5] C. Pesci: Computational analysis of fluid interfaces influenced by soluble
surfactant, Ph.D. Thesis, TU Darmstadt, 2019

[6] C. Pesci, A. Weiner, H. Marschall, D. Bothe: Computational analysis of single
rising bubbles influenced by soluble surfactant, Journal of Fluid Mechanics, 856, 209-
763, 2018

[7] Z. Tuković, H. Jasak: A moving mesh finite volume interface tracking method for
surface tension dominated interfacial fluid flow, Computers & Fluids, 55, 70-84, 2012

[8] T. Tolle, T. Marić, D. Bothe: SAAMPLE: A segregated accuracy-driven algorithm
for multiphase pressure-linked equations, Computers & Fluids, 200, 104450, 2020

