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Biologically inspired micro-aerial vehicles (MAVs) and autonomous underwater vehicles (AUVs) 
have sparked significant research attention in unsteady aero and hydrodynamics of flapping 
wings and fins [1, 2]. Most of these studies focused on two-dimensional (2D) canonical flapping 
models. The 2D assumption is valid for some species of birds and insects with relatively high-AR 
wings, such that the effects of the span-wise variability in the flow-field can be neglected. The 
three-dimensional (3D) effects become predominant for insects and fishes, possessing low-AR 
(< 5) wings and fins to facilitate high agility during their locomotion [3, 4]. Nature-inspired man-
made flapping devices require low-AR wings/fins for agile motion in complex environments. 
Therefore, a thorough understanding of the 3D flow-field of low-AR flapping wings/fins is 
crucial for their efficient design. 

The present study investigates the 3D wake past a finite-span plunging wing at Reynolds 
number (Re) of 250. The focus is on revealing new transitional wake dynamics behind a low-AR 
flapping wing in order to understand the interactions among leading-edge, trailing-edge, and 
tip vortices (LEV, TEV and TiVs). A discrete direct-forcing immersed boundary method (IBM) is 
employed to solve the 3D incompressible Navier-Stokes (N-S) equation. Kinematic parameters, 
particularly amplitude and frequency of the plunge motion, are found to have significant effects 
on the transition in the three-dimensional wake topology. The underlying vortex shedding 
mechanisms are unraveled with the aid of the Q-criterion iso-surfaces and streamlines. A 
transition from periodic bifurcated wake to completely aperiodic wake is observed with the 
increase in Strouhal number. The formation, growth, and separation of the 3D leading-edge 
vortex and its role behind the loss of periodicity of the wake are presented. 

Computational Methodology: 

An IBM-based finite volume N-S solver, available in an extended version of open-source 
libraries of OpenFOAM (foam-extend 3.2) [5], is used to simulate the 3D unsteady flow-field 
around a low-AR flapping wing. IBM is chosen for the simulations over boundary-fitted 
methods, such as the arbitrary Lagrangian-Eulerian (ALE) approach as it significantly reduces 
the computational cost of the 3D fluid dynamic simulations involving flow interactions with 



moving boundaries. The IBM solver, used [6], follows a discrete-direct forcing approach. It 
requires a fixed Eulerian mesh on which the N-S equations are discretized and an immersed 
boundary (IB) surface (stationary or moving) corresponding to the obstruction in the flow, the 
location of which is traced by Lagrangian markers. The IB surface is introduced as a FTR (FOAM 
tri-surface) format derived from a STL (STereo-Lithography) file having the triangulated IB grid 
data. At every time step, the computational grid points are classified into fluid cells, solid cells, 
and IB cells based on the location of the solid boundary surface intersecting the fluid domain. 
The cells inside the IB surface are conventionally tagged as solid cells that do not contribute to 
the solution. Immersed boundary cells are identified as the fluid cells cut by the immersed 
boundary and have at least one face outside the IB surface. The rest of the outside cells are 
tagged as fluid cells where the N-S equation is solved without any modification. For the 
discrete-direct approach, the imposition of immersed boundary conditions is achieved through 
modifying the discretized governing equations near the IB to directly impose the boundary 
conditions on IB cells. In contrast with other indirect imposition approaches, there is no forcing 
term introduced into the governing equations either in continuous or in discretized form. 
Values of dependent variables in the IB cell centers are calculated at each time step by 
interpolation using neighboring cells’ values and the boundary condition at the corresponding 
IB points. Appropriate boundary conditions are enforced on the IB points using a weighted least 
squares (WLS) interpolation to ensure a sharp representation of the structural boundary 
eliminating smearing. Global mass conservation is satisfied by scaling the fluxes through the 
face-cage enclosing the immersed boundary. 

Computational Domain, Mesh and Validation: 

A finite-span NACA0012 wing is chosen for the present simulations. The wing-span (S) is 
considered to be two times the chord-length (c). A rectangular computational domain of size 
26cx16cx8c is considered; see Fig. 1(a). This domain is sufficient for accommodating the wake 
structures without wall effects and has been chosen through a domain-independence test. A 3D 
Cartesian coordinate system is considered with the origin located at the leading-edge of the 
wing. The leading-edge of the wing is situated at a distance of 5c from the inlet along the X-axis, 
and is symmetrically spanned along the Z-axis with the center of the span being located at z = 0. 
The incoming flow and the wing motion are considered along the X and Y-directions, 
respectively. A uniform flow condition and zero pressure gradient are imposed on the inlet 
boundary, and zero velocity and pressure gradients are imposed on the outlet boundary. The 
slip boundary condition, satisfying no-normal velocity and zero pressure-gradient, is enforced 
on all the side walls. The immersed boundary condition is applied on the surface of the 
oscillating wing. A structured mesh is chosen through a grid independence study by changing 
the mesh density in the near-wake region, marked by ‘A’ in Fig. 1(b). The result of the grid-
independence study, presented in Fig. 1(c), shows a spatial resolution of  Δ𝑥 = Δ𝑦 = 0.045 is 
sufficient to ensure converged results. A time step of 0.001 is chosen through a time-step 
independence study, see Fig. 1(d). The flow-solver is quantitatively validated by comparing the 



time-history of 𝐶௟ with the results of Han et al. [7] for a simultaneously pitching-plunging airfoil 
(see Fig. 2) and a good match is observed. 

 

Fig. 1: (a) Computational domain; (b) mesh; (c) grid-independence result; (d) time-step 
independence result. 

(a) (b) 

(c) (d) 



Fig. 2: Quantitative validation of the present IBM solver. Comparison of time history of lift 
coefficient (𝐶௟) with the results of Han et al. [7] for a simultaneously pitching-plunging airfoil 
with 𝛼= 300, h = 0.5, 𝜙 = 900, StA = 0.6, Re = 200.

Representative Results: 

The 3D flow-field remains periodic up to moderately higher values of 𝜅ℎ indicating that 3D 
wakes behind flapping wings are more stable in comparison to the 2D wake. The 3D periodic 
wakes are observed to comprise of two sets of vortex rings (VR) convecting upwards and 
downwards alternatively, at oblique angles about the mean horizontal axis and is designated as 
a ‘bifurcated wake’. As 𝜅ℎ is gradually increased to considerably higher values, the wake is seen 
to lose its periodicity. The bifurcated wake pattern breaks down to an aperiodic state through 
complex interactions between the near-field flow structures. Figure 3 presents the typical 
periodic and aperiodic wake patterns (a and b) and the streamlines in the corresponding 
regimes (c and d). The behavior of the streamlines clearly show that contribution of the LEV and 
TiVs are almost negligible in the near-field interactions in the periodic regime. On the other 
hand, strong interactions among the LEV, TEV and TiVs are observed in the aperiodic regimes 
that eventually lead to the breakdown of the organized wake pattern. Despite some claims 
raised in the existing literature that aperiodicity and chaos do not exist in 3D flow-field, 
aperiodicity in the flow-field has been observed in the present study for a significantly higher 
value of 𝜅ℎ as compared to the 2D cases [7]. Note that chaos and aperiodicity in 2D cases have 
been well established at high 𝜅ℎ values [8]. The findings of the present study conclusively show 
that the qualitative nature of the dynamical transitions is very similar in 2D and 3D, though the 
bifurcation boundaries in the parametric plane vary. The complex interactions between the 
LEV, TEV and TiVs, that play a pivotal role in destroying the organization of the near-field wake, 
will be presented in the conference. 



Fig. 3: Wake topology and the stream lines during periodic (a, c) and 
aperiodic regime (b, d) at 𝜅 = 8. 
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