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Abstract

This paper presents recent developments pertaining to an adjoint-based topology optimization
software for aero/hydrodynamic and conjugate heat transfer problems, based on the adjoint infras-
tructure of OpenFOAM v1912/v2006. The software follows the density (porosity)-based approach,
incorporating recent developments related to the regularization and projection of the underly-
ing porosity field. The flow and adjoint equations along with the topology optimization problem
formulation are presented in brief, followed by academic and industrial applications.

1 Introduction

Topology Optimization (TopO) is nowadays a popular method for the preliminary design of in-
dustrial duct systems with multiple inlets and outlets [7]. Though a number of variants exist for
formulating the TopO problem, such as the density- (or porosity) based approach [3] or level-set
methods [4], they all follow the idea of artificially blocking part of an initial flow domain to penalize
its counter-productive areas, in an attempt to minimize an objective function J , such as the total
pressure losses between the inlets and outlets of the domain. This blockage (or porosity) field
acts as the field of the design variables in TopO problems. Usually, one design variable exists per
grid cell, formulating optimization problems with thousands or millions of design variables. This
particular feature of TopO makes the utilization of adjoint methods for computing the gradient
of J with respect to (w.r.t.) the design variables αn, n ∈ [1, N ] the only computationally feasible
approach.

Since v1906, OpenFOAM includes an extensive library for solving the continuous adjoint equa-
tions for incompressible, turbulent flows which was enhanced with a framework for automated
shape optimization loops in v1912. This paper presents an extension of this framework to solve
TopO problems, covering incompressible fluid dynamics and conjugate heat transfer (CHT). The
method and software rely on the density-based TopO approach [3], properly formulated to cover
incompressible turbulent flows, by enhancing the mean flow, turbulence and distance equations
with porosity-dependent terms. Additionally, the energy equation (and its adjoint) are solved
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to take into consideration CHT effects, by interpolating the thermo-physical properties between
the fluid and solid domains using the porosity field containing the design variables of the TopO
problem. The TopO approach, including the primal and adjoint equations, as well as a number
of recent developments such as the regularization of the porosity field to mitigate the effects of a
grid-dependent solution and the checkerboard effect [5], is presented in brief in section 2. Then,
the developed software is used to tackle some academic and industrial cases in section 3.

2 TopO problem formulation

In TopO problems, the field of design variables α is used to solidify the part of the initial flow
domain that is counter-productive w.r.t. the objective function J that needs to be minimized. Parts
of the computational domain with an (almost) unitary α value correspond to the solidified areas
whereas practically zero α values indicate the fluid part of the domain. The interface between the
two regions indicates the designed walls of the duct system. To simulate the solidification of parts
of the computational domain, the flow equations are augmented with α-dependent source terms,
locally driving the flow solution towards values corresponding to solid boundaries. The altered
flow equations, coupled with the Spalart-Allmaras [9] one-equation turbulence model PDE and the
Eikonal equation to compute the distance ∆ from the walls, as well as the energy equation read
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∂xj

=0 (1a)
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where β ∈ [0, 1] is a field that depends on the porosity field α (see below) and shares its physi-
cal interpretation, vi are the velocity components, p is the pressure divided by the fluid density,

τij = (ν + νt)
(
∂vi
∂xj

+
∂vj
∂xi

)
, ν and νt are the bulk and eddy viscosity coefficients respectively and

P (ν̃) and D (ν̃) are the production and dissipation terms of the turbulence model, respectively,
[9]. Additionally, T is the temperature field, ρ and cp the constant fluid density and specific heat
transfer coefficient under constant pressure, respectively, and k the thermal conductivity, inter-
polated between the fluid and the solidified parts of the domain. Furthermore, the Iv, I ν̃ , I∆, Ik

functions are used to either drive the flow solution towards values corresponding to solid walls
(eqs. 1b to 1d) or to interpolate between the thermo-physical properties of the fluid and solidified
domains (eq. 1e). In eq. 1e, the convection term is multiplied with (1 − β) to cancel out the in-
evitable small-scale leakage of fluid into the solid domain that is almost always observed in TopO.
The βmax value is used to ensure that the vi, ν̃ and ∆ values are practically zero in the solidified
domain. Its value can be computed based on the Darcy number, quantifying the ratio between
viscous and porous forces, [6],

Da =
ν

βmaxL2
(2)

where L is a characteristic length of the case under consideration. In all cases presented in section
3, Da = 10−5 and L is either the inlet length or the inlet hydraulic diameter for 2D and 3D cases,
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respectively. The porosity-dependent terms added to eqs. 1b to 1d as well as the k interpolation in
eq. 1e are implemented as new fvOptions, to allow for code modularity and adaptability. A number
of I functions have been proposed in the literature and implemented into the software. Here, only
the ones used in section 3 are mentioned, namely the one proposed by Borrvall and Petersson in
[2] and the Solid Isotropic Material with Penalization (SIMP) [1], i.e.

IB−P (β) =
β

1 + b(1− β)
(3a)

ISIMP (β) = βb (3b)

where b is a parameter controlling the steepness of the interpolation function. Larger b values
correspond to sharper distinctions between the fluid and solid domains. However, larger b values
also lead to stiffer optimization problems. Hence, the software offers the capability of varying
the b values throughout the optimization cycles using any of the available Function1 schemes,
including an additional step one that increases the b value in a stepped manner, after a prescribed
number of optimization cycles. Therefore, b values in the order of 1 are usually used in the first
few optimization cycles and gradually increased to a range of 3 − 10 to obtain a sharp interface
between the fluid and solid domains.

In a number of TopO problems, especially those related to CHT, checkerboard artifacts may
appear in the α field. To avoid these artifacts and to mitigate the effects of local grid size to the
optimized solution, the so-called regularization of the porosity field can be performed [5]. Here,
this is implemented through the use of a Helmholtz-type filter [5], i.e.

−r2 ∂
2α̃

∂x2
j

+ α̃ = α (4)

where α̃ is the regularized porosity field and r can be seen as a smoothing radius, usually computed
as a function of the average grid cell size. Regularization, as any other smoothing technique,
unavoidably blurs the line between the fluid and solidified domains. To increase the contrast of
the α̃ field, a so-called projection can follow the regularization step, using the following relation [5]

β =
tanh(0.5b) + tanh[b(α̃− 0.5)]

2tanh(0.5b)
(5)

where b is a sharpening parameter, similar to that met in eq. 3. If no regularization/projection is
applied, β = α in eqs. 1.

After following the methodology outlined in [8], the continuous adjoint PDEs to eqs. 1 can be
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developed and read

Rq=−∂uj
∂xj

=0 (6a)

Rui =uj
∂vj
∂xi
− ∂ (vjui)

∂xj
−
∂ταij
∂xj

+
∂q

∂xi
+ν̃a

∂ν̃

∂xi
− ∂

∂xl

(
ν̃aν̃

CY
Y
emjk

∂vk
∂xj

emli

)
+ρcp

{
(1− β)Ta

∂

∂xj

(
∂T

∂xj

)
− ∂

∂xj

[
(1− β)Ta

∂T

∂xj

]}
+βmaxI

v(β)ui=0 i = 1, 2(, 3) (6b)

Rν̃a =−∂ (vj ν̃a)

∂xj
− ∂

∂xj

[(
ν +

ν̃

σ

)
∂ν̃a
∂xj

]
+

1

σ

∂ν̃a
∂xj

∂ν̃

∂xj
+2

cb2
σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+ν̃aν̃Cν̃

+
∂νt
∂ν̃

∂ui
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+(−P +D)ν̃a+βmaxI

ν̃(β)ν̃a=0 (6c)

R∆α =−2
∂

∂xj

(
∆α

∂∆

∂xj

)
+ν̃ν̃aC∆+βmaxI

∆(β)∆α=0 (6d)

RTα =−ρcp
∂

∂xj
[(1− β)vjTa]− ∂

∂xj

[
k(Ik(β))

∂Ta
∂xj

]
=0 (6e)

where ui are the adjoint velocity components, q the adjoint pressure, ν̃a the adjoint to the turbu-

lence model variable, ταij = (ν + νt)
(
∂ui
∂xj

+
∂uj
∂xi

)
are the adjoint stresses, ∆α the adjoint distance

from the walls and Tα the adjoint temperature field. Terms Cν̃ , CY and C∆ can be found in [12].
The adjoint boundary conditions can be developed by following the methodology outlined in [8]
and are omitted in the interest or brevity.

After solving the primal and adjoint PDEs, the sensitivity derivatives w.r.t. the α field can be
computed as
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δJ
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where ∂β/∂α̃ is computed analytically by differentiating eq. 5 and eq. 7b is the adjoint to the
regularization equation. In case no regularization is employed, δJ/δα is given directly by eq. 7a.

Two objective functions are used in the cases that follow in section 3, the total pressure losses
between the inlet(s) SI and the outlet(s) SO of the fluid domain

Jpt = −
∫
SI ,SO

(
p+

1

2
v2
k

)
vinidS (8)

to be minimized and the heat flux difference between SI and SO

JQ =

∫
SI ,SO

vjnjTdS (9)
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to be maximized. Additionally, as is accustomed to TopO problems, an inequality constraint
related to the percentage of the computational domain occupied by the fluid is also included in all
applications of section 3, formulated as

CV =

∫
Ω

(1− β)dΩ∫
Ω
dΩ

− t < 0 (10)

where t is the target fluid volume percentage.
After computing the objective and constraint derivatives, the α field is updated using the

Method of Moving Asymptotes (MMA) [10] or its Globally Convergent variant (GCMMA) [11],
both of which have been programmed into OpenFOAM. (GC)MMA can handle inequality con-
straints as well as bounds for the design variables, both useful features for taking into consideration
the constraint of eq. 10 and the fact that the α field should lay in the [0, 1] range.

3 Applications

This section presents some applications of the method and software outlined in section 2, for pure
aerodynamic as well as CHT TopO problems.

The first two problems presented herein were initially studied in [4] using a level-set TopO
approach. They are re-visited here in order to have a measure of comparison for the newly developed
features presented in section 2. Fig. 1 depicts the TopO of a duct system with one inlet and
two outlets. The Reynolds number based on the inlet height is Re = 200 and Jpt is minimized
under the volume constraint defined by eq. 10 with t = 0.462. No regularization was used in
this case since no checkerboard effect was observed and Iv(β)=β = α was used in the momentum
equations. For this and most of the other applications of this section, it was observed that activating
the design variables gradually, starting from the initial walls of the computational domain and
marching inwards a few cells in each optimization cycle, instead of letting them all change from
the first optimization cycle, prevented the algorithm from being entrapped into a locally optimal
solution of the multi-modal design space (10000 design variables) during the first few iterations
of the TopO problem. Hence, the method shares some characteristics with level-set in the first
optimization cycles (the optimal solution can march a few cells at a time, starting from the initial
walls) and gradually switches to a typical density-based approach where all design variables can
change simultaneously as the optimization cycles progress. Jpt was reduced by ∼ 33% and the
volume inequality constraint was satisfied (C=−1.15× 10−7). A process for converting the TopO
solution to a CAD-compatible description, re-meshing and evaluating using a body-fitted mesh has
been developed by the authors and described in [4] but was considered outside the scope of this
paper.

Fig. 2 presents the TopO solution of another problem initially studied in [4] with the level-set
approach. The Reynolds number based on the inlet height is Re=200 and Jpt is minimized under
the volume constraint defined by eq. 10 with t= 0.415. No regularization was used in this case
either. Jpt was actually increased by a small percentage (2.8%) in order to meet the imposed
volume constraint. As with the first case studied, the optimized solution bears a lot of similarities
with the level-set solution presented in [4], suggesting that the two methods can be used almost
interchangeably.

In fig. 3, the TopO of a 3D manifold system is presented. The flow is laminar with a Reynolds
number based on the inlet hydraulic diameter of 2000 and Jpt is minimized, under the CV constraint
with t=0.3. Jpt was reduced by ∼ 45% and the fluid volume has been reduced significantly more
than its supplied maximum value (C=−0.054).

Fig. 4, showcases the TopO of a Heating, Ventilation and Air-Conditioning (HVAC) duct located
in a passenger car. The case was shared by Volkswagen AG in the context of the EU-funded
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Figure 1: Case 1, One-inlet, two-outlet duct. The flow enters the domain from the left and exits
from the bottom and right. The optimized β field is shown on the left, where a binary distribution
can be observed. The corresponding velocity magnitude is depicted on the right.

Figure 2: Case 2, One-inlet, two-outlet duct with a bottleneck formation. The flow enters the
domain from the top left and exits from the bottom and right. The optimized β field is shown on
the left and the corresponding velocity magnitude on the right.

AboutFlow ITN. The flow is turbulent, with a Re= 3000 based on the inlet hydraulic diameter
and the Spalart-Allmaras turbulence model is used along with its adjoint, as presented in section
2. Jpt is used as the objective function and reduced by ∼ 50%, under the C constraint with t=0.7.
The IB−P function was used in eqs. 1b to 1d together with a regularization of the porosity field.
TopO blocks the areas of the initial domain with a high flow recirculation, minimizing pressure
losses significantly.

Finally, fig. 5 presents a CHT TopO of a micro-channel. The bottom and side walls of the
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Figure 3: Case 3, 3D manifold. The flow enters the domain from the inlet, coloured in red, and
exits from the four outlets, coloured in blue (top-left). The duct walls can be traced by computing
a β iso-surface of an almost zero value (here an iso-surface of β = 10−5, coloured in yellow, top-
right). The velocity streamlines, coloured by the velocity magnitude are depicted in the bottom
sub-figure.

channel have a temperature of 373K while the flow enters the domain from the left with 273K
and a Re = 166. The walls adjacent to the inlet and outlet are adiabatic and the top surface
has symmetry conditions. Weighted combinations of the Jpt and JQ objectives are formulated by
varying the wpt and wQ weights in the following expression J = wptJpt − wQJQ which is then
minimized multiple times. For all cases studied, the CV constraint is also imposed with t= 0.5.
As expected, the (wpt , wQ) = (1, 0) weight value-set leads practically to a straight duct while
increasing wQ leads to the designs of ducts that approach the lower heated wall, in order to heat
the flowing fluid. In this case, Iv=IB−P , Ik=ISIMP and a regularization and projection strategy
was necessary to avoid a checkerboard effect when wQ was increased. The trade-off between Jpt and
JQ can be seen in fig. 6, where a front on non-dominated solutions has been computed separately
by optimizing for a number of (wpt , wQ) weight value-sets.
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Figure 4: Case 4, HVAC duct. Top: a β iso-surface of 10−3 showcasing the walls designed by
TopO, coloured in blue, along with the blurred boundaries of the computational domain, coloured
in light grey. Mid and bottom: streamlines of the flow velocity coloured by its magnitude for the
baseline and optimized geometries, respectively. It can be seen that by blocking the areas in which
the geometry cross-section was increasing abruptly in the baseline design, TopO has reduced a
large portion of the initially present recirculation, reducing losses significantly.

Figure 5: Case 5, CHT optimization of a micro-channel. The β distributions for various weight
value-sets are depicted on the left while the fluid and solid temperatures are portrayed on the right.
From top to bottom, the weight values-sets (wpt , wQ) multiplying Jpt and JQ are (1,0), (0.5,0.5)
and (0.1,0.9).
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Figure 6: Case 5, CHT optimization of a micro-channel. The front of non-dominated solutions
computed by conducting a number of different optimizations, each with a different (wJpt , wQ)
weight value set. All objective values have been normalized with the ones corresponding to the
flow and temperature solution with β=0.
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4 Closure

A density-based topology optimization method and software for aero/hydrodynamic as well as
conjugate heat transfer problems has been developed by extending the continuous adjoint infras-
tructure of OpenFOAM v1912/v2006. The software implements a number of features like different
interpolation functions, regularization and projection of the porosity field, utilizes (GC)MMA to
update the design variables and even borrows ideas from level-set approaches to avoid early en-
trapment into local minima. Initial testing has showed that the introduction of regularization
may decrease the contrast of the porosity field, making the boundaries between the fluid and solid
domain slightly more blurry, but is necessary to tackle CHT topology optimization problems in
which checkerboard effects are very common. On the contrary, its use is not mandatory in purely
aero/hydrodynamic optimization problems. The software was applied to a number of 2D and 3D
topology optimization problems, practically replicating the optimized solutions that were com-
puted with an older level-set approach for some of the examined cases. Additionally, new cases
were examined, including CHT, highlighting a trade-off between total pressure losses minimization
and heat-flux increase.
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