Skip to main content
Cookie Disclaimer
This site uses cookies in order to improve your user experience and to provide content tailored specifically to your interests. Detailed information on the use of cookies on this website is provided in our Privacy Policy. Click "Learn More" to change you cookie settings. By using this website, you consent to the use of cookies.
OK Learn more
Search form
  • EnglishEnglish
  • FrenchFrench
  • GermanGerman
  • SpanishSpanish
  • CzechCzech
  • RussianRussian
  • PolishPolish
  • PortuguesePortuguese
  • JapaneseJapanese
  • ChineseChinese
  • ThaiThai
  • KoreanKorean
  • Contatti
  • Resource Center
  • Lavora con noi
  • Investor Relations
  • myESI
ESI Group - Home
  • Virtual Prototyping
    Building the Virtual Prototype Enabling the Factory of the Future Delivering the Hybrid Twin™
  • Soluzioni Software
    Virtual Manufacturing
    Casting / Colata Compositi Stampaggio Lamiera Saldatura e Assemblaggio Additive Manufacturing Plastics
    Virtual Performance
    Virtual Performance Solution Virtual Seat Solution VA One
    Virtual Environment
    CFD & Multiphysics Elettromagnetismo Virtual Systems & Controls
    Virtual Integration Platform
    Multi-Domain Simulation Decision Support
    Virtual Reality
    IC.IDO
    Data Analytics
    Simulation Data Analytics Cyber Security Design Space Exploration
    System Modeling
    SimulationX
  • Servizi d’ingegneria
    Servizi di Consulenza Supporto Tecnico Portale Clienti myESI Formazione
  • Settori Industriali
    Aerospace & Defense Electronics & Consumer Goods Energy & Power Ground Transportation Heavy Industry & Machinery Marine
  • L'azienda
    Il Gruppo ESI Customer Successes Ufficio Stampa Eventi Partner Investors Lavora con noi ESI nel mondo
  • Home >
  • Soluzioni Software >
  • Virtual Manufacturing >
  • Stampaggio Lamiera >
  • PAM-STAMP >
  • Die Face Design Next Generation
SOLUZIONI SOFTWARE
  • Virtual Manufacturing
    • Casting / Colata
    • Compositi
    • Stampaggio Lamiera
      • PAM-STAMP
        • Die Face Design
        • Applications
        • Customer Successes
        • Resource Center
      • Saldatura e Assemblaggio
      • Additive Manufacturing
      • Plastics
    • Virtual Performance
    • Virtual Environment
    • Virtual Integration Platform
    • Virtual Reality
    • Data Analytics
    • System Modeling

    Contattaci

    Contattaci
    Condividi Condividi
    Stampa Email Facebook Twitter Linkedin

    Die Face Design next Generation

    Nowadays die face design is moving towards CAD environment. Iterations are done directly inside CAD and on native CAD data. The tool used for die face design must support the user in all phases of the process design cycle: from the very early conception phase, through feasibility studies until the final validation. An optimum with respect to performance and accuracy needs to be established for each of these separate steps. Die face design should be based on B-Spline geometry in order to keep the solution fast, powerful, flexible and compliant to the automotive industry standards. Any possible hold due to required changes in geometry must be removed. Surfaces must be accurate to guarantee an accurate description of contact surfaces and accurate simulation results – as early as possible

    Die face of a door inner – Based on B-spline geometry

    Die face of a door inner – Based on B-spline geometry

    Customer Challenge

    Automotive sheet metal forming parts come from the design department and often consider only aesthetics (outer panels) or functionality (reinforcements, beams etc.). Normally no, or very little, consideration is given to manufacturability. This is the job of the process design department or toolmaker: find ways to create the part in a robust and cost-optimized way. In most cases the time-pressure is huge (and ever increasing), but still many variants of the die face design and process need to be considered before an optimum (manufacturability and cost!) is found.

    Typical Workflow

    • Starting from the part geometry, a first die face design for the first draw die is quickly drafted and evaluated for general feasibility like occurrences of cracks and wrinkles. As the first design will not normally fulfil all criteria, iteration loops are run to optimize the die face design and stamping process parameters. These iterations normally consist out of the following:
    • Complete or partial part modifications coming from the design department
    • Geometrical addendum modifications to eliminate wrinkles, cracks or to optimize the trimming conditions
    • Process modifications to overcome cracks and wrinkles and improve the general robustness of the process
    • Reduction of blank size for material cost optimization
    • Propose part modifications in case a feasible or robust process cannot be guaranteed

    After proof of concept of the general feasibility for the first drawing stage, the following operations are included in the process design (trimming, hemming, flanging, restrike…), both geometrical design and simulation validation. Next to the crack and wrinkle analysis and press force estimation, other criteria also become relevant at this stage, e.g. analysis including cosmetic defects for outer panels and springback compensation for the forming dies. Finally, the last step, after full validation of the process design, milling of the production tools will be carried out.

    Key Capabilities        

    Integration of a dedicated solution for die face design into CAD environments will offer huge advantages over standard CAD usage and mesh-based die face design solutions:

    • Compared to standard CAD usage, it minimizes the tool designers’ workload by implementing tool design & process knowledge, and following the natural process of tool face design.
    • The integration offers a set of powerful interactive tools and functions, which provide guidance and support for part preparation, binder development and die addendum and provides quick access to important process information like trimming angle conditions and developed trimline geometry.
    • It combines the convenience and speed of rapid die face design with the quality of the native CAD surfacing. Therefore highest quality simulation results can be expected – right from the beginning.
    • Full CAD based design eliminates the need to regenerate a mesh model in CAD and thus doing the same work twice. The same model can be used throughout all phases of the development process,  from the early (feasibility) stage up to the milling of the model
    • Due to the CAD integration all native CAD functionalities can be used to reach an optimal design without need for compromises due to limitations of the mesh-based die face design software
    • Easy and fast iterations due to dedicated part replace functionality: in just a few minutes, the original part geometry can be exchanged with the latest version of the part. There is no need to reconstruct manually the full die any more.
    • By providing a strong dedicated link to the simulation environment, quick and easy simulation iterations can be carried out without the need for much user interaction and  without loss of geometrical accuracy

    Major Benefits

    • Reduction of costs, by using the state-of-the-art die face development methods to deliver right the first time
    • Ensuring success in prototyping and manufacturing by testing the virtual prototype first: production problems avoidance strategy
    • Gain time: no need to rebuild die face designs in CAD environment based on a mesh reference
    • Also in the last phase of the development process new part variants can still be easily and quickly investigated by integrated intuitive replace functionality for CAD data
    • Fast learning curve for new users: with only very little training also non CAD experts can become extremely efficient in creating production ready die face designs
    • The die face design product can be easily integrated into the existing host PLM structure

     

    Making engineers productive – What is available and how does it work:

    • Topology check, cleanup and repair
    • Material cost estimation
    • Die face design next generation based on B-Spline geometry
    • Fast link with simulation
    • Accurate numerical methods
    • Geometrical drawbeads
    • Springback - Kinematic Hardening Model
    • Ironing
    • Triple speed mode for breathtaking short simulation times
    • Precise prediction of wrinkles including folding – no numerical flattening
    • Blank & Trim Line Optimization
    • Springback of High Strength Steel
    • (Multi-operation) compensation
    • Virtual prototyping of the full stamping chain
    • Cosmetic defects
    • Customization
    • High quality results without tradeoffs in cost and time
    • Hot Forming , End-to-End Virtual Prototyping
    • Chaining with manufacturing engineering and assembly prototyping
    • Virtual Reality

    Eventi in programma

      QR code

      Page URL:
      https://www.esi-group.com/soluzioni-software/virtual-manufacturing/stampaggio-lamiera/pam-stamp/die-face-design-next-generation
      Permanent link to the page:
      https://www.esi-group.com/node/2915
      • Virtual Prototyping
        Building the Virtual Prototype Enabling the Factory of the Future Delivering the Hybrid Twin™
      • Soluzioni Software
        Virtual Manufacturing Virtual Performance Virtual Environment Virtual Integration Platform Virtual Reality Data Analytics System Modeling
      • Servizi d’ingegneria
        Servizi di Consulenza Supporto Tecnico Portale Clienti myESI Formazione
      • Settori Industriali
        Aerospace & Defense Electronics & Consumer Goods Energy & Power Ground Transportation Heavy Industry & Machinery Marine
      • L'azienda
        Il Gruppo ESI Ufficio Stampa Eventi Partner Investors

      ESI Italia srl Headquarters

      Location Map Mostra nella mappa
      Phone +39 0516335577 +39 0516335577
      Fax +39 0516335601
      Address Viale Angelo Masini, 36
      Phone 40126 Bologna IT
      • Privacy & Termini di Utilizzo
      • Legale
      • Cookie settings
      • Glossario
      • © ESI Group 2019
      • Facebook
      • Twitter
      • YouTube
      • LinkedIn
      • news RSS

      Version: Desktop | Mobile