8th OpenFOAM Conference | Agenda Oct. 13, 2020

Opening Keynote Panel - 10:45-12:035am CET					
10:45-11:15a CET	Welcome and Introduction from ESI Group				
11:15-12:00a CET	Collaboration across the CFD community and continuing the V&V journey, Althea de Souza, Chair of NAFEMS CFD working group				
12:00-12:30p CET	Scalable and optimized HPC in the Cloud for your OpenFOAM simulations, Romain Klein, Rescale				
12:30-12:35p CET	A word from our Gold Sponsor – Upstream CFD – Dr. Charles Mockett				

	A word from our cold opolisor - opstream of b - bi. Onlines mockett					
Networking Break						
Industry Sessions – 01:00 pm – 14:20 pm CET						
	Optimization		Multiphase I			
01:00-01:20p CET	An Adjoint-based Topology Optimization Framework for Fluid Mechanics and Conjugate Heat Transfer in OpenFOAM, Vaggelis Papoutsis, NTUA		CFD Modelling of Fuel-Air mixture formation in a GDI engine using OpenFOAM, Andrea Pati, TU DARMSTADT			
01:20-01:40p CET	Real time visualization of parametrized turbulent flow, Amine Ammar, ENSAM		Development of an eularian solver for fluidized beds under deactivation conditions, Aitor Atxutegi, UNIVERSITY OF THE BASQUE COUNTRY			
01:40-02:00p CET	Creating data-driven CFD workflows using OpenFOAM and PyTorch, André Weiner, TU Braunschweig		Industrial simulation of multiphase and moving body flow using OpenFOAM and Visual-CFD, Nima Abbaspour, WAGNER			
02:00-02:20p CET	On the efficiency and robustness of the adjoint method: Applications in steady and unsteady shape optimization in fluid mechanics, Themis Skamagkis, NTUA		On the simulation of the Filling Stage of Thermoplastic Injection Molding using the Open-Source Solver openInjMoldSim, Célio Fernandes, UNIVERSITY MINHO			
02:20-02:40p CET	Machine-learning based approach to global optimization and interactive design, Matthias Bauer, NAVASTO		Modelling the Extrusion Phase of Extrusion Blow Molding, Miguel Nóbrega, UNIVERSITY MINHO			
Networking Break						
03:10-03:50p CET	O3:10-03:50p CET Technical Committees Panel Discussion: HPC, Marine, Nuclear, Turbulence, Multiphase					
03:50-04:35p CET	Architecting CFD for the Industrial Scale, Sanjay Mathur, ESI Group					
	Transportation		Multiphase II			
04:40-05:00p CET	Numerical Investigation of JAXA High-Lift Configuration using OpenFOAM, Baris Bicer, TURKISH AEROSPACE INDUSTRIES		An injection head to generate a stable falling liquid Im within a circular duct, Luis Alberto Borraz Jonapa, UNIVERSITY OF SCIENCE AND ARTS OF CHIAPAS			
05:00-05:20p CET	Modelling of Hood Fluttering due to Aerodynamic Forces, Armando Perez Pena, ESI Group		Modelling Gas and High-Viscous-Oil Slug Flow Regime to Estimate the Dispersed Phase Distribution Coefficient, Victor Pugliese, TEXAS TECH UNIVERSITY	tion		
05:20-05:40p CET	Automotive Cabin Thermal Comfort Analysis Using a Pseudo-transient Thermal-CFD Coupling Methodology Between TAITherm and OpenFOAM, Denis Hinz, THERMOANALYTICS		Analysis of different multiphase CFD models for aerated stirred bioreactors, Stefan Seidel, ZHAW Zurich University of Applied Sciences			
05:40-06:00p CET			Numerical investigation on the microfluidic droplet coalescence under the influence of capillary-wettability interaction, Rakesh Majumder, NATIONAL INSTITUTE OF TECHNOLOGY			

8th OpenFOAM Conference | Agenda Oct. 14, 2020

Opening Ke	Opening Keynote Panel - 09:00-10:15 am CET							
09:00-09:45a CE	CET OpenFOAM: Governance and Recent Highlights, Andrew Heather, Technical Director, Open CFD							
09:45-10:15a CE	5a CET Large-eddy simulations of airflow and aerosol transport on a London bus during the Covid-19 pandemic, Prof. Thorsten Stoesser, University College London							
10:15-10:20a CE	A word from our Gold Sponsor – Amazon	n Web Service	s - Dr. Neil Ashton					
	Networking Break							
Industry Ses	Industry Sessions – 11:00 am – 03:40 pm CET							
	Heat Transfer and Energy		Turbulence and Co	omk	oustion I	High Pe	rformance Computing	
11:00-11:20a CET	Heat transfers in fixed beds made with wood chips, Lionel Gamet, IFP ENERGIES NOUVELLES		Turbulence modelling investigation for 3.5 adaptive-mesh refinement in OpenFOAM®,			HPC Benchmarck Projectivan Spisso, CINECA	ct: how to use and initial test-case(s),	
11:20-11:40a	Towards modeling of MHD effects on imploding liners Magnetized Target Fusion approach, Victoria Suponitsky, GENERALFUSION	in context of	Simulation of a catalytically assisted burne combustion model, Henrik Rusche, WIKKI	er usi	ng a simplified	AmgX GPU Solver Deve OpenFOAM, Matt Martin		
11:40-12:00a	An overview on electrochemical simulation with Open Norbert Weber, HELMHOLTZ-ZENTRUM DRESDEN	FOAM,	Comprehensive model for blast furnace wi model using OpenFOAM, Prakash Abhale, 7				o accelerate turbulent combustion and lations, Federico Ghioldi, POLITECNICO	
12:00-12:20p	Wall-Modeled Large-Eddy Simulations of Airfoil Trailing Thomas Malkus, OHIO STATE UNIVERSITY	g Edge Noise,	Development of optimisation strategies to NOx Postprocessor, Senthilathiban Swamina LEOBEN	enha i athan	nce the performance of , MONTAN UNIVERSITY		Band and In-Network Computing on s, Ophir Maor, HPC Council	
12:20-12:40p	External Core Catcher Cooling, Samyak Darshan, COLLEGE OF ENGINEERING BENGAL	LURU 🖺	Lowering the obstacles for SMEs to adopt simulations by providing a cloud-based so Henrik Rusche, WIKKI			GPU enabling of OpenF Stefano Zampini, KAUST	OAM by the use of PETSc4FOAM librar	ry,
Networking Break								
01:40-02:20p	Technical Committ	tees Panel Di	scussion: Numerics, Documentation	1&Tu	utorial, Optimization - Տր	pecial focus on Oper	FOAM Journal	
	Environment	Tu	rbulence and Combustion II		Technol	ogy	High Performance Comp	o. II
02:20-02:40p CET	New developments for numerical wave tanks for coastel and offshore applications, Gabriel Barajas Ojeda, IH CANTABRIA	Modeling larg Alex Krisman,	je-scale thermoplastic fires, FM GLOBAL		Modeling hyperelastic solid Dr. József Nagy, EULERIAN S		Does OpenFOAM scale? Mattjis Janssens, ESI	
02:40-03:00p	Modelling of H2O2 flotation for removing microplastics from waste water, Emmanuel Thom, UNIVERSITY FREIBERG	turbulent com	e Flamelet Model-an efficient yet accurate abustion model implemented in OpenFOAM, CHINESE ACADEMY OF SCIENCES		Three-Dimensional Simulation around a Flapping Foil using Solvers of OpenFOAM, Char	g Immersed Boundary	Performance Evaluation of OpenFOA on Juelich Supercomputing Facilities (JURECA, JUWELS and JUSUF), Abo	s 🖃
03:00-03:20p	High resolution urban air quality modeling using a multi-scale approach, Rakesh Kadaverugu, CSIR	Non-Premixed	rbulence and Thermodynamics in Simulating I Combustion in a Cement Kiln, aye, TECHNICAL UNIVERSITY DELFT	\\\	Nonlinear Response Analysi Flexible Flapper in the Wake OpenFOAM, Rajanya Chatterj	of a Bluff Body using	Ghasemi Forchungszentrum Juelich	
03:20-03:40p	OpenFOAM computational performance:double vs mixed precision, Federico Brogi, Istituto Nazionale di Geofisica e Vulcanologia				Workflow Development for Aerospace S-Duct, Ishan Na			

8th OpenFOAM Conference | Agenda Day 3

	OpenFOAM Best Practices & Meshing	OpenFOAM Adjoint Optimization			
9:00-12.00a CET	Aimed at users with experience in OpenFOAM, who wish to improve the robustness, speed and accuracy of their simulations with best practice settings validated by OpenCFD. We will discuss new performance improvements and developments recently released in v1912 and v2006 on numerics and physical modelling and present latest best practices and insights.	Aimed at users who want to perform shape optimization with OpenFOAM and the Adjoint technology released in OpenFOAM. Discussing the definition of the optimization processes, understanding the simulation requirements and outputs, and making engineering decisions supported b tangible results. We will also discuss new functionality introduced in the latest release. This workshop is led by developers of the method from NTUA (National Technical University of Athens).			
	COVID-19	Visual-CFD			
1:00-4.00p CET	The COVID-19 pandemic is still present! In the phase of returning to a new "normal" our everday activities are linked to the question of how to minimize the risk of infection and how to increase confidence in our safety. Scientific research unveiled that the pathogen can remain airborne and active in aerosol form for several hours. The analysis of infection outbreaks have shown that keeping 1,5 m distance to other people does not always protect from becoming infected. Interventions like wearing masks or costly structural measures like acryl glass barriers are not always necessary or effective. Validated CFD-tools, like OpenFOAM, allow us to simulate and visualize the dispersion of aerosols under various conditions. In turn, digital simulation enables us to assess the effectiveness of interventions. The opensource nature of OpenFOAM provides the unique framework to generate knowledge about the containment of the spread of the virus in a broad community with increasing speed.	Visual-CFD is an advanced user interface created for OpenFOAM and made available within ESI's multi-domain simulation platform, Visual-Environment. With Visual-CFD, users can import CAD Models, clean them up, setup, solve and post-process an OpenFOAM case in a fully customizable environment. Its familiar CFD User Interface and terminology makes it an invaluable tool for beginners and experienced users alike. Visual-CFD is an advanced user interface created for OpenFOAM and made available within ESI's multi-domain simulation platform, Visual-Environment. With Visual-CFD, users can import CAD Models, clean them up, setup, solve and post-process an OpenFOAM case in a fully customizable environment. Its familiar CFD User Interface and terminology makes it an invaluable tool for beginners and experienced users alike.			